Geophysical inverse problems with measurement-guided diffusion models
- URL: http://arxiv.org/abs/2501.04881v1
- Date: Wed, 08 Jan 2025 23:33:50 GMT
- Title: Geophysical inverse problems with measurement-guided diffusion models
- Authors: Matteo Ravasi,
- Abstract summary: I consider two sampling algorithms recently proposed under the name of Diffusion Posterior Sampling (DPS) and Pseudo-inverse Guided Diffusion Model (PGDM)
In DPS, the guidance term is obtained by applying the adjoint of the modeling operator to the residual obtained from a one-step denoising estimate of the solution.
On the other hand, PGDM utilizes a pseudo-inverse operator that originates from the fact that the one-step denoised solution is not assumed to be deterministic.
- Score: 0.4532517021515834
- License:
- Abstract: Solving inverse problems with the reverse process of a diffusion model represents an appealing avenue to produce highly realistic, yet diverse solutions from incomplete and possibly noisy measurements, ultimately enabling uncertainty quantification at scale. However, because of the intractable nature of the score function of the likelihood term (i.e., $\nabla_{\mathbf{x}_t} p(\mathbf{y} | \mathbf{x}_t)$), various samplers have been proposed in the literature that use different (more or less accurate) approximations of such a gradient to guide the diffusion process towards solutions that match the observations. In this work, I consider two sampling algorithms recently proposed under the name of Diffusion Posterior Sampling (DPS) and Pseudo-inverse Guided Diffusion Model (PGDM), respectively. In DSP, the guidance term used at each step of the reverse diffusion process is obtained by applying the adjoint of the modeling operator to the residual obtained from a one-step denoising estimate of the solution. On the other hand, PGDM utilizes a pseudo-inverse operator that originates from the fact that the one-step denoised solution is not assumed to be deterministic, rather modeled as a Gaussian distribution. Through an extensive set of numerical examples on two geophysical inverse problems (namely, seismic interpolation and seismic inversion), I show that two key aspects for the success of any measurement-guided diffusion process are: i) our ability to re-parametrize the inverse problem such that the sought after model is bounded between -1 and 1 (a pre-requisite for any diffusion model); ii) the choice of the training dataset used to learn the implicit prior that guides the reverse diffusion process. Numerical examples on synthetic and field datasets reveal that PGDM outperforms DPS in both scenarios at limited additional cost.
Related papers
- A Mixture-Based Framework for Guiding Diffusion Models [19.83064246586143]
Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems.
Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems.
This work proposes a novel mixture approximation of these intermediate distributions.
arXiv Detail & Related papers (2025-02-05T16:26:06Z) - Enhancing Diffusion Models for Inverse Problems with Covariance-Aware Posterior Sampling [3.866047645663101]
In computer vision, for example, tasks such as inpainting, deblurring, and super resolution can be effectively modeled as inverse problems.
DDPMs are shown to provide a promising solution to noisy linear inverse problems without the need for additional task specific training.
arXiv Detail & Related papers (2024-12-28T06:17:44Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
We propose a novel approximation method for estimating the high-dimensional posterior distribution.
This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters.
The proposed method can be fully implemented in an automatic differentiation manner.
arXiv Detail & Related papers (2023-02-22T06:48:10Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.