論文の概要: Multi-modal Multi-kernel Graph Learning for Autism Prediction and
Biomarker Discovery
- arxiv url: http://arxiv.org/abs/2303.03388v2
- Date: Sun, 9 Apr 2023 05:29:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 20:36:32.821121
- Title: Multi-modal Multi-kernel Graph Learning for Autism Prediction and
Biomarker Discovery
- Title(参考訳): 自閉症予測とバイオマーカー発見のためのマルチモーダルマルチカーネルグラフ学習
- Authors: Junbin Mao, Jin Liu, Hanhe Lin, Hulin Kuang, Shirui Pan and Yi Pan
- Abstract要約: 本稿では,マルチモーダル統合の過程におけるモダリティ間の負の影響を相殺し,グラフから異種情報を抽出する手法を提案する。
本手法は,Autism Brain Imaging Data Exchange (ABIDE) データセットを用いて評価し,最先端の手法よりも優れている。
また,自閉症に関連する差別的脳領域を本モデルにより同定し,自閉症の病態研究の指針を提供する。
- 参考スコア(独自算出の注目度): 29.790200009136825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to its complexity, graph learning-based multi-modal integration and
classification is one of the most challenging obstacles for disease prediction.
To effectively offset the negative impact between modalities in the process of
multi-modal integration and extract heterogeneous information from graphs, we
propose a novel method called MMKGL (Multi-modal Multi-Kernel Graph Learning).
For the problem of negative impact between modalities, we propose a multi-modal
graph embedding module to construct a multi-modal graph. Different from
conventional methods that manually construct static graphs for all modalities,
each modality generates a separate graph by adaptive learning, where a function
graph and a supervision graph are introduced for optimization during the
multi-graph fusion embedding process. We then propose a multi-kernel graph
learning module to extract heterogeneous information from the multi-modal
graph. The information in the multi-modal graph at different levels is
aggregated by convolutional kernels with different receptive field sizes,
followed by generating a cross-kernel discovery tensor for disease prediction.
Our method is evaluated on the benchmark Autism Brain Imaging Data Exchange
(ABIDE) dataset and outperforms the state-of-the-art methods. In addition,
discriminative brain regions associated with autism are identified by our
model, providing guidance for the study of autism pathology.
- Abstract(参考訳): その複雑さのため、グラフ学習に基づくマルチモーダル統合と分類は、疾患予測の最も困難な障害の1つである。
マルチモーダル統合の過程におけるモダリティ間の負の影響を効果的に相殺するために,MMKGL(Multi-modal Multi-Kernel Graph Learning)と呼ばれる新しい手法を提案する。
モーダル性間の負の影響の問題を解くため,マルチモーダルグラフを構成するマルチモーダルグラフ埋め込みモジュールを提案する。
全てのモダリティに対して静的グラフを手動で構築する従来の方法とは異なり、各モダリティは適応学習によって個別のグラフを生成する。
次に,マルチモーダルグラフから異種情報を抽出するマルチカーネルグラフ学習モジュールを提案する。
異なるレベルのマルチモーダルグラフの情報は、異なる受容フィールドサイズを持つ畳み込みカーネルによって集約され、続いて、疾患予測のためのクロスカーネル発見テンソルを生成する。
本手法は,Autism Brain Imaging Data Exchange (ABIDE) データセットを用いて評価し,最先端の手法よりも優れている。
また,自閉症に関連する差別的脳領域を本モデルにより同定し,自閉症の病態研究の指針を提供する。
関連論文リスト
- GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Omnimodal Learning(GTP-4o)のためのモダリティプロンプト不均質グラフ
我々は、Omnimodal Learning(GTP-4o)のための革新的モダリティプロンプト不均質グラフを提案する。
論文 参考訳(メタデータ) (2024-07-08T01:06:13Z) - MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction [8.592259720470697]
脳障害予測のためのマルチモーダルグラフ深層学習フレームワークMM-GTUNetsを提案する。
本稿では,報酬システムを用いて集団グラフを適応的に構築するMRRL(Modality Reward Representation Learning)を提案する。
また,ACMGL(Adaptive Cross-Modal Graph Learning)を提案する。
論文 参考訳(メタデータ) (2024-06-20T16:14:43Z) - Graph Relation Distillation for Efficient Biomedical Instance
Segmentation [80.51124447333493]
本稿では,効率的なバイオメディカル・インスタンス・セグメンテーションのためのグラフ関係蒸留手法を提案する。
画像内レベルと画像間レベルの両方に展開する2つのグラフ蒸留方式を導入する。
多くのバイオメディカルデータセットの実験結果から,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-01-12T04:41:23Z) - M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive
Learning [16.391439666603578]
マルチスケールなメタパス統合ヘテロジニアスグラフコントラスト学習(M2HGCL)モデルを提案する。
具体的には、メタパスを拡大し、直接的な隣接情報、初期メタパス隣情報、拡張されたメタパス隣情報とを共同で集約する。
3つの実世界のデータセットに関する広範な実験を通して、M2HGCLが現在の最先端のベースラインモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-09-03T06:39:56Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Multi-modal Graph Learning for Disease Prediction [35.156975779372836]
マルチモーダルな疾患予測のためのエンドツーエンドマルチモーダルグラフ学習フレームワーク(MMGL)を提案する。
手動でグラフを定義する代わりに、潜在グラフ構造は適応グラフ学習の効果的な方法によって取得される。
2つの疾患予測タスクに関する広範な実験群は、提案したMMGLがより良好な性能を発揮することを示した。
論文 参考訳(メタデータ) (2022-03-11T12:33:20Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Multi-modal Graph Learning for Disease Prediction [35.4310911850558]
病気予測のためのエンドツーエンドのマルチモーダルグラフ学習フレームワーク(MMGL)を提案する。
隣接行列を既存の手法として手動で定義する代わりに、潜在グラフ構造を適応グラフ学習の新しい方法によって捉えることができる。
論文 参考訳(メタデータ) (2021-07-01T03:59:22Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
2つのコア成分を組み込んだ多次元グラフ学習モデルを提案します。
情報埋め込みグラフを生成するグラフ自己補正(GSC)機構、および入力グラフの包括的な特性評価を達成するために多様性ブースト正規化(DBR)。
一般的なグラフ分類ベンチマークの実験は、提案されたGSCメカニズムが最先端のグラフプーリング方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2021-03-17T16:22:24Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。