3D Facial Expressions through Analysis-by-Neural-Synthesis
- URL: http://arxiv.org/abs/2404.04104v1
- Date: Fri, 5 Apr 2024 14:00:07 GMT
- Title: 3D Facial Expressions through Analysis-by-Neural-Synthesis
- Authors: George Retsinas, Panagiotis P. Filntisis, Radek Danecek, Victoria F. Abrevaya, Anastasios Roussos, Timo Bolkart, Petros Maragos,
- Abstract summary: SMIRK (Spatial Modeling for Image-based Reconstruction of Kinesics) faithfully reconstructs expressive 3D faces from images.
We identify two key limitations in existing methods: shortcomings in their self-supervised training formulation, and a lack of expression diversity in the training images.
Our qualitative, quantitative and particularly our perceptual evaluations demonstrate that SMIRK achieves the new state-of-the art performance on accurate expression reconstruction.
- Score: 30.2749903946587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While existing methods for 3D face reconstruction from in-the-wild images excel at recovering the overall face shape, they commonly miss subtle, extreme, asymmetric, or rarely observed expressions. We improve upon these methods with SMIRK (Spatial Modeling for Image-based Reconstruction of Kinesics), which faithfully reconstructs expressive 3D faces from images. We identify two key limitations in existing methods: shortcomings in their self-supervised training formulation, and a lack of expression diversity in the training images. For training, most methods employ differentiable rendering to compare a predicted face mesh with the input image, along with a plethora of additional loss functions. This differentiable rendering loss not only has to provide supervision to optimize for 3D face geometry, camera, albedo, and lighting, which is an ill-posed optimization problem, but the domain gap between rendering and input image further hinders the learning process. Instead, SMIRK replaces the differentiable rendering with a neural rendering module that, given the rendered predicted mesh geometry, and sparsely sampled pixels of the input image, generates a face image. As the neural rendering gets color information from sampled image pixels, supervising with neural rendering-based reconstruction loss can focus solely on the geometry. Further, it enables us to generate images of the input identity with varying expressions while training. These are then utilized as input to the reconstruction model and used as supervision with ground truth geometry. This effectively augments the training data and enhances the generalization for diverse expressions. Our qualitative, quantitative and particularly our perceptual evaluations demonstrate that SMIRK achieves the new state-of-the art performance on accurate expression reconstruction. Project webpage: https://georgeretsi.github.io/smirk/.
Related papers
- Learning Topology Uniformed Face Mesh by Volume Rendering for Multi-view Reconstruction [40.45683488053611]
Face meshes in consistent topology serve as the foundation for many face-related applications.
We propose a mesh volume rendering method that enables directly optimizing mesh geometry while preserving topology.
Key innovation lies in spreading sparse mesh features into the surrounding space to simulate radiance field required for volume rendering.
arXiv Detail & Related papers (2024-04-08T15:25:50Z) - A Perceptual Shape Loss for Monocular 3D Face Reconstruction [13.527078921914985]
We propose a new loss function for monocular face capture inspired by how humans would perceive the quality of a 3D face reconstruction.
Our loss is implemented as a discriminator-style neural network that takes an input face image and a shaded render of the geometry estimate.
We show how our new perceptual shape loss can be combined with traditional energy terms for monocular 3D face optimization and deep neural network regression.
arXiv Detail & Related papers (2023-10-30T14:39:11Z) - Enhancing Neural Rendering Methods with Image Augmentations [59.00067936686825]
We study the use of image augmentations in learning neural rendering methods (NRMs) for 3D scenes.
We find that introducing image augmentations during training presents challenges such as geometric and photometric inconsistencies.
Our experiments demonstrate the benefits of incorporating augmentations when learning NRMs, including improved photometric quality and surface reconstruction.
arXiv Detail & Related papers (2023-06-15T07:18:27Z) - Refining 3D Human Texture Estimation from a Single Image [3.8761064607384195]
Estimating 3D human texture from a single image is essential in graphics and vision.
We propose a framework that adaptively samples the input by a deformable convolution where offsets are learned via a deep neural network.
arXiv Detail & Related papers (2023-03-06T19:53:50Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-05T07:02:53Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.