論文の概要: Analysis and Detectability of Offline Data Poisoning Attacks on Linear
Dynamical Systems
- arxiv url: http://arxiv.org/abs/2211.08804v5
- Date: Tue, 16 May 2023 06:48:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 19:25:21.059148
- Title: Analysis and Detectability of Offline Data Poisoning Attacks on Linear
Dynamical Systems
- Title(参考訳): 線形力学系におけるオフラインデータポジショニング攻撃の解析と検出可能性
- Authors: Alessio Russo
- Abstract要約: 統計検査のレンズを用いて最小二乗推定値に有毒が及ぼす影響について検討した。
古典的な統計的テストから逃れることのできる最小二乗推定器に対するステルスデータ中毒攻撃を提案する。
- 参考スコア(独自算出の注目度): 0.30458514384586405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there has been a growing interest in the effects of data
poisoning attacks on data-driven control methods. Poisoning attacks are
well-known to the Machine Learning community, which, however, make use of
assumptions, such as cross-sample independence, that in general do not hold for
linear dynamical systems. Consequently, these systems require different attack
and detection methods than those developed for supervised learning problems in
the i.i.d.\ setting. Since most data-driven control algorithms make use of the
least-squares estimator, we study how poisoning impacts the least-squares
estimate through the lens of statistical testing, and question in what way data
poisoning attacks can be detected. We establish under which conditions the set
of models compatible with the data includes the true model of the system, and
we analyze different poisoning strategies for the attacker. On the basis of the
arguments hereby presented, we propose a stealthy data poisoning attack on the
least-squares estimator that can escape classical statistical tests, and
conclude by showing the efficiency of the proposed attack.
- Abstract(参考訳): 近年、データ駆動制御手法に対するデータ中毒攻撃の影響に対する関心が高まっている。
毒殺攻撃は機械学習コミュニティではよく知られていますが、これは一般的に線形力学系では持たない、クロスサンプル独立のような仮定を利用しています。
したがって、これらのシステムは、i.i.d.\設定の教師付き学習問題のために開発されたものとは異なる攻撃および検出方法を必要とする。
多くのデータ駆動制御アルゴリズムは最小二乗推定器を利用するため、統計検査のレンズを通して最小二乗推定値に毒がどのような影響を及ぼすか、また、データ中毒攻撃を検出する方法に疑問を呈する。
我々は,データに適合するモデルの集合がシステムの真のモデルを含む条件を定式化し,攻撃者に対する異なる中毒戦略を分析する。
そこで本稿では,古典的統計的テストから逃れることのできる最小二乗推定器に対するステルスデータ中毒攻撃を提案し,提案攻撃の有効性を示す。
関連論文リスト
- On the Adversarial Risk of Test Time Adaptation: An Investigation into Realistic Test-Time Data Poisoning [49.17494657762375]
テスト時間適応(TTA)は、テストデータを使用して推論段階でモデルの重みを更新し、一般化を強化する。
既存の研究では、TTAが逆方向検体で更新されると、良性検体の性能が低下することが示されている。
そこで本研究では, 良性試料にアクセスすることなく, 有毒試料を効果的かつ現実的に生成する手法を提案する。
論文 参考訳(メタデータ) (2024-10-07T01:29:19Z) - Have You Poisoned My Data? Defending Neural Networks against Data Poisoning [0.393259574660092]
本稿では,トランスファー学習環境における有毒なデータポイントの検出とフィルタリングを行う新しい手法を提案する。
有効毒は, 特徴ベクトル空間の清浄点とよく区別できることを示す。
提案手法は, 防衛率と最終訓練モデルの性能において, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-20T11:50:16Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Poison is Not Traceless: Fully-Agnostic Detection of Poisoning Attacks [4.064462548421468]
本稿では,潜在的に有毒なデータセットの分析にのみ依存する攻撃を検知する新しいフレームワークであるDIVAを提案する。
評価のために,本稿ではラベルフリップ攻撃に対するDIVAを検証した。
論文 参考訳(メタデータ) (2023-10-24T22:27:44Z) - What Distributions are Robust to Indiscriminate Poisoning Attacks for
Linear Learners? [15.848311379119295]
本研究では, 学習者に対する無差別な毒殺について検討し, 学習者に対して, 学習データにいくつかの工芸品を注入し, 誘導モデルに高い試験誤差を生じさせるよう強制することを目的とした。
そこで本研究では, 線形学習者に対して, 線形学習者に対する有害な攻撃を非差別化するために, データセットが本質的に堅牢であるかどうかを考察した。
論文 参考訳(メタデータ) (2023-07-03T14:54:13Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
Attacks [31.339252233416477]
対象パラメータに対するデータ中毒攻撃の本質的な限界を探索するための技術ツールとして,モデル中毒の到達可能性の概念を紹介した。
我々は、一般的なMLモデルの中で驚くべき位相遷移現象を確立し、定量化するために、容易に計算可能なしきい値を得る。
我々の研究は, 有毒比がもたらす重要な役割を強調し, データ中毒における既存の経験的結果, 攻撃, 緩和戦略に関する新たな知見を隠蔽する。
論文 参考訳(メタデータ) (2023-03-07T01:55:26Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Data Poisoning Attacks on Regression Learning and Corresponding Defenses [0.0]
逆データ中毒は機械学習に対する効果的な攻撃であり、トレーニングデータセットに有毒データを導入することでモデルの完全性を脅かす。
データ中毒攻撃が生産システムに脅威を与え、新たなブラックボックス攻撃をもたらす現実的なシナリオを提示する。
その結果, 残留剤の平均二乗誤差(MSE)は, わずか2%の毒素を挿入することにより150パーセントに増加することがわかった。
論文 参考訳(メタデータ) (2020-09-15T12:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。