論文の概要: MPool: Motif-Based Graph Pooling
- arxiv url: http://arxiv.org/abs/2303.03654v1
- Date: Tue, 7 Mar 2023 05:21:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 16:25:49.452168
- Title: MPool: Motif-Based Graph Pooling
- Title(参考訳): MPool: モチーフベースのグラフプール
- Authors: Muhammad Ifte Khairul Islam, Max Khanov, Esra Akbas
- Abstract要約: グラフニューラルネットワーク(GNN)は近年,グラフ分類を含む多くのグラフ関連タスクにおいて,強力な技術となっている。
マルチチャネルモチーフに基づくグラフポーリング手法(MPool)を提案する。
第1のチャネルとして、ノードのモチーフ隣接性を考慮したノードランキングモデルを設計し、ノード選択に基づくグラフプーリングを開発する。
第2のチャネルとして、モチーフアジャシエンスを用いたスペクトルクラスタリングモデルを設計し、クラスタベースのグラフプーリングを開発する。
最終層として、各チャネルの結果を最終グラフ表現に集約する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural networks (GNNs) have recently become a powerful technique for
many graph-related tasks including graph classification. Current GNN models
apply different graph pooling methods that reduce the number of nodes and edges
to learn the higher-order structure of the graph in a hierarchical way. All
these methods primarily rely on the one-hop neighborhood. However, they do not
consider the higher- order structure of the graph. In this work, we propose a
multi-channel Motif-based Graph Pooling method named (MPool) captures the
higher-order graph structure with motif and local and global graph structure
with a combination of selection and clustering-based pooling operations. As the
first channel, we develop node selection-based graph pooling by designing a
node ranking model considering the motif adjacency of nodes. As the second
channel, we develop cluster-based graph pooling by designing a spectral
clustering model using motif adjacency. As the final layer, the result of each
channel is aggregated into the final graph representation. We perform extensive
experiments on eight benchmark datasets and show that our proposed method shows
better accuracy than the baseline methods for graph classification tasks.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は最近、グラフ分類を含む多くのグラフ関連のタスクで強力な技術となっている。
現在のGNNモデルは、グラフの高次構造を階層的に学習するために、ノードとエッジの数を減らす異なるグラフプーリング手法を適用している。
これらの手法は主にワンホップ地区に依存している。
しかし、彼らはグラフの高次構造を考慮していない。
本研究では,マルチチャネルモチーフに基づくグラフプーリング手法(mpool)を提案し,選択操作とクラスタリングに基づくプーリング操作の組み合わせにより,モチーフと局所およびグローバルグラフ構造を組み合わせた高次グラフ構造をキャプチャする。
第1のチャネルとして、ノードのモチーフ隣接性を考慮したノードランキングモデルを設計し、ノード選択に基づくグラフプーリングを開発する。
第2のチャネルとして,モチーフ隣接を用いたスペクトルクラスタリングモデルの設計を行い,クラスタベースのグラフプーリングを開発した。
最終層として、各チャネルの結果を最終グラフ表現に集約する。
8つのベンチマークデータセットについて広範な実験を行い,提案手法がグラフ分類タスクのベースライン法よりも精度が高いことを示す。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Careful Selection and Thoughtful Discarding: Graph Explicit Pooling
Utilizing Discarded Nodes [53.08068729187698]
本稿では,ノードと最終表現ベクトルの関係を明示的に活用してノードを選択するグラフ明示プール法を提案する。
提案手法の有効性を検証するため,12種類の広く使用されているデータセットを対象とした総合的な実験を行った。
論文 参考訳(メタデータ) (2023-11-21T14:44:51Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
多くの現実世界のシステムは、システム内の異なるエンティティがノードによって表現され、エッジによって相互作用するグラフとして表現することができる。
グラフィカルな構造を持つ大規模なデータセットを研究する上で重要なタスクはグラフクラスタリングである。
本稿では,FIR(Finite Impulse Response)およびARMA(Autoregressive moving Average)グラフフィルタのパラメータをクラスタリングに最適化したグラフ信号処理手法を提案する。
論文 参考訳(メタデータ) (2022-11-09T01:49:23Z) - Multi-Granularity Graph Pooling for Video-based Person Re-Identification [14.943835935921296]
ビデオサンプルの時間的特徴と空間的特徴を集約するためにグラフニューラルネットワーク(GNN)が導入された。
STGCNのような既存のグラフベースのモデルは、グラフ表現を得るためにノード機能でtextitmean/textitmaxプールを実行する。
ビデオ検索のための多粒度グラフ表現を学習するためのグラフプーリングネットワーク(GPNet)を提案する。
論文 参考訳(メタデータ) (2022-09-23T13:26:05Z) - Higher-order Clustering and Pooling for Graph Neural Networks [77.47617360812023]
グラフニューラルネットワークは、多数のグラフ分類タスクにおいて最先端のパフォーマンスを達成する。
HoscPoolはクラスタリングベースのグラフプーリング演算子で、階層的に高階情報をキャプチャする。
グラフ分類タスクにおいてHoscPoolを評価し,そのクラスタリングコンポーネントを地層構造を持つグラフ上で評価する。
論文 参考訳(メタデータ) (2022-09-02T09:17:10Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
グラフプーリングとして2次プールを提案するが、これは上記の課題を自然に解決する。
グラフニューラルネットワークによる2次プールの直接利用は、実用的な問題を引き起こすことを示す。
本稿では,2次プールに基づく2つの新しいグローバルグラフプーリング手法,すなわちバイリニアマッピングと2次プールを提案する。
論文 参考訳(メタデータ) (2020-07-20T20:52:36Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。