Blueprint for quantum computing using electrons on helium
- URL: http://arxiv.org/abs/2303.03688v3
- Date: Thu, 19 Oct 2023 04:31:35 GMT
- Title: Blueprint for quantum computing using electrons on helium
- Authors: Erika Kawakami, Jiabao Chen, M\'onica Benito, Denis Konstantinov
- Abstract summary: We present a blueprint for building a fault-tolerant quantum computer using the spin states of electrons on the surface of liquid helium.
We propose to use ferromagnetic micropillars to trap single electrons on top of them and to generate a local magnetic field gradient.
Introducing a local magnetic field gradient hybridizes charge and spin degrees of freedom, which allows us to benefit from both the long coherence time of the spin state and the long-range Coulomb interaction that affects the charge state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a blueprint for building a fault-tolerant quantum computer using
the spin states of electrons on the surface of liquid helium. We propose to use
ferromagnetic micropillars to trap single electrons on top of them and to
generate a local magnetic field gradient. Introducing a local magnetic field
gradient hybridizes charge and spin degrees of freedom, which allows us to
benefit from both the long coherence time of the spin state and the long-range
Coulomb interaction that affects the charge state. We present concrete schemes
to realize single- and two-qubit gates and quantum-non-demolition read-out. In
our framework, the hybridization of charge and spin degrees of freedom is large
enough to perform fast qubit gates and small enough not to degrade the
coherence time of the spin state significantly, which leads to the realization
of high-fidelity qubit gates.
Related papers
- Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Spin dynamics in quantum dots on liquid helium [0.0]
We consider the spin states of electrons electrostatically localized in quantum dots on a helium surface.
Efficient gate operations in this system require spin-orbit coupling.
arXiv Detail & Related papers (2022-12-20T22:58:37Z) - Feasibility study on ground-state cooling and single-phonon readout of
trapped electrons using hybrid quantum systems [0.0]
Controlling the motional state of the trapped electron is a crucial issue.
We show that the ground-state cooling and the single-phonon readout of the motional state of the trapped electron are possible.
arXiv Detail & Related papers (2022-04-17T08:47:44Z) - On-demand electrical control of spin qubits [0.49813399226871663]
We demonstrate a technique that enables a emphswitchable interaction between spins and orbital motion of electrons in silicon quantum dots.
The naturally weak effects of the relativistic spin-orbit interaction in silicon are enhanced by more than three orders of magnitude by controlling the energy quantisation of electrons in the nanostructure.
arXiv Detail & Related papers (2022-01-18T00:43:54Z) - Non-uniform magnetic field as a booster for quantum speed limit: faster
quantum information processing [0.0]
We show that the quantum speed limit increases to a large value, but within the regime of causality, by choosing a proper variation in magnetic fields.
We use the Bremermann--Bekenstein bound to find a critical magnetic field that bridges the gap between non-relativistic and relativistic treatments.
arXiv Detail & Related papers (2021-12-08T19:00:15Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Single electrons on solid neon as a solid-state qubit platform [10.980660117562438]
Novel qubit platforms embody long coherence, fast operation, and large scalability.
electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
arXiv Detail & Related papers (2021-06-18T19:35:16Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.