On-demand electrical control of spin qubits
- URL: http://arxiv.org/abs/2201.06679v2
- Date: Fri, 18 Mar 2022 09:03:06 GMT
- Title: On-demand electrical control of spin qubits
- Authors: Will Gilbert, Tuomo Tanttu, Wee Han Lim, MengKe Feng, Jonathan Y.
Huang, Jesus D. Cifuentes, Santiago Serrano, Philip Y. Mai, Ross C. C. Leon,
Christopher C. Escott, Kohei M. Itoh, Nikolay V. Abrosimov, Hans-Joachim
Pohl, Michael L. W. Thewalt, Fay E. Hudson, Andrea Morello, Arne Laucht, Chih
Hwan Yang, Andre Saraiva, Andrew S. Dzurak
- Abstract summary: We demonstrate a technique that enables a emphswitchable interaction between spins and orbital motion of electrons in silicon quantum dots.
The naturally weak effects of the relativistic spin-orbit interaction in silicon are enhanced by more than three orders of magnitude by controlling the energy quantisation of electrons in the nanostructure.
- Score: 0.49813399226871663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Once called a "classically non-describable two-valuedness" by Pauli , the
electron spin is a natural resource for long-lived quantum information since it
is mostly impervious to electric fluctuations and can be replicated in large
arrays using silicon quantum dots, which offer high-fidelity control.
Paradoxically, one of the most convenient control strategies is the integration
of nanoscale magnets to artificially enhance the coupling between spins and
electric field, which in turn hampers the spin's noise immunity and adds
architectural complexity. Here we demonstrate a technique that enables a
\emph{switchable} interaction between spins and orbital motion of electrons in
silicon quantum dots, without the presence of a micromagnet. The naturally weak
effects of the relativistic spin-orbit interaction in silicon are enhanced by
more than three orders of magnitude by controlling the energy quantisation of
electrons in the nanostructure, enhancing the orbital motion. Fast electrical
control is demonstrated in multiple devices and electronic configurations,
highlighting the utility of the technique. Using the electrical drive we
achieve coherence time $T_{2,{\rm Hahn}}\approx50 \mu$s, fast single-qubit
gates with ${T_{\pi/2}=3}$ ns and gate fidelities of 99.93 % probed by
randomised benchmarking. The higher gate speeds and better compatibility with
CMOS manufacturing enabled by on-demand electric control improve the prospects
for realising scalable silicon quantum processors.
Related papers
- Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum
dot arrays [0.2529650288460727]
Current CMOS spin qubit processors consist of dense gate arrays to define the quantum dots.
Small but sizeable spin-orbit interactions can transfer this electrostatic crosstalk to the spin g-factors.
By studying the Stark shift from tens of spin qubits measured in nine different CMOS devices, we developed a theoretical frawework that explains how electric fields couple to the spin of the electrons.
arXiv Detail & Related papers (2023-09-04T22:44:24Z) - Coherent spin-valley oscillations in silicon [0.0]
We show that the spin-valley coupling in Si enables coherent control of electron spins in Si.
We demonstrate coherent manipulation of effective single- and two-electron spin states in a Si/SiGe double quantum dot without ac magnetic or electric fields.
arXiv Detail & Related papers (2021-11-29T18:57:24Z) - An electron-spin qubit platform assembled atom-by-atom on a surface [5.2557648054493065]
We demonstrate an atomic-scale qubit platform by showing atom-by-atom construction, coherent operations, and readout of multiple electron-spin qubits on a surface.
Our work marks the creation of an Angstrom-scale qubit platform, where quantum functionalities using electron spin arrays, built atom-by-atom on a surface, are now within reach.
arXiv Detail & Related papers (2021-08-23T01:04:24Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Single electrons on solid neon as a solid-state qubit platform [10.980660117562438]
Novel qubit platforms embody long coherence, fast operation, and large scalability.
electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
arXiv Detail & Related papers (2021-06-18T19:35:16Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.