Refined Pseudo labeling for Source-free Domain Adaptive Object Detection
- URL: http://arxiv.org/abs/2303.03728v1
- Date: Tue, 7 Mar 2023 08:31:42 GMT
- Title: Refined Pseudo labeling for Source-free Domain Adaptive Object Detection
- Authors: Siqi Zhang, Lu Zhang and Zhiyong Liu
- Abstract summary: Source-freeD is proposed to adapt source-trained detectors to target domains with only unlabeled target data.
Existing source-freeD methods typically utilize pseudo labeling, where the performance heavily relies on the selection of confidence threshold.
We present a category-aware adaptive threshold estimation module, which adaptively provides the appropriate threshold for each category.
- Score: 9.705172026751294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptive object detection (DAOD) assumes that both labeled source data
and unlabeled target data are available for training, but this assumption does
not always hold in real-world scenarios. Thus, source-free DAOD is proposed to
adapt the source-trained detectors to target domains with only unlabeled target
data. Existing source-free DAOD methods typically utilize pseudo labeling,
where the performance heavily relies on the selection of confidence threshold.
However, most prior works adopt a single fixed threshold for all classes to
generate pseudo labels, which ignore the imbalanced class distribution,
resulting in biased pseudo labels. In this work, we propose a refined pseudo
labeling framework for source-free DAOD. First, to generate unbiased pseudo
labels, we present a category-aware adaptive threshold estimation module, which
adaptively provides the appropriate threshold for each category. Second, to
alleviate incorrect box regression, a localization-aware pseudo label
assignment strategy is introduced to divide labels into certain and uncertain
ones and optimize them separately. Finally, extensive experiments on four
adaptation tasks demonstrate the effectiveness of our method.
Related papers
- Uncertainty-Aware Pseudo-Label Filtering for Source-Free Unsupervised Domain Adaptation [45.53185386883692]
Source-free unsupervised domain adaptation (SFUDA) aims to enable the utilization of a pre-trained source model in an unlabeled target domain without access to source data.
We propose a method called Uncertainty-aware Pseudo-label-filtering Adaptation (UPA) to efficiently address this issue in a coarse-to-fine manner.
arXiv Detail & Related papers (2024-03-17T16:19:40Z) - Dual Moving Average Pseudo-Labeling for Source-Free Inductive Domain
Adaptation [45.024029784248825]
Unsupervised domain adaptation reduces the reliance on data annotation in deep learning by adapting knowledge from a source to a target domain.
For privacy and efficiency concerns, source-free domain adaptation extends unsupervised domain adaptation by adapting a pre-trained source model to an unlabeled target domain.
We propose a new semi-supervised fine-tuning method named Dual Moving Average Pseudo-Labeling (DMAPL) for source-free inductive domain adaptation.
arXiv Detail & Related papers (2022-12-15T23:20:13Z) - Robust Target Training for Multi-Source Domain Adaptation [110.77704026569499]
We propose a novel Bi-level Optimization based Robust Target Training (BORT$2$) method for MSDA.
Our proposed method achieves the state of the art performance on three MSDA benchmarks, including the large-scale DomainNet dataset.
arXiv Detail & Related papers (2022-10-04T15:20:01Z) - Improving Pseudo Labels With Intra-Class Similarity for Unsupervised
Domain Adaptation [14.059958451082544]
We propose a novel approach to improve the accuracy of the pseudo labels in the target domain.
The proposed method can boost the accuracy of the pseudo labels and further lead to more discriminative and domain invariant features.
arXiv Detail & Related papers (2022-07-25T12:42:24Z) - Cycle Label-Consistent Networks for Unsupervised Domain Adaptation [57.29464116557734]
Domain adaptation aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution.
We propose a simple yet efficient domain adaptation method, i.e. Cycle Label-Consistent Network (CLCN), by exploiting the cycle consistency of classification label.
We demonstrate the effectiveness of our approach on MNIST-USPS-SVHN, Office-31, Office-Home and Image CLEF-DA benchmarks.
arXiv Detail & Related papers (2022-05-27T13:09:08Z) - Delving into Probabilistic Uncertainty for Unsupervised Domain Adaptive
Person Re-Identification [54.174146346387204]
We propose an approach named probabilistic uncertainty guided progressive label refinery (P$2$LR) for domain adaptive person re-identification.
A quantitative criterion is established to measure the uncertainty of pseudo labels and facilitate the network training.
Our method outperforms the baseline by 6.5% mAP on the Duke2Market task, while surpassing the state-of-the-art method by 2.5% mAP on the Market2MSMT task.
arXiv Detail & Related papers (2021-12-28T07:40:12Z) - Rethinking Pseudo Labels for Semi-Supervised Object Detection [84.697097472401]
We introduce certainty-aware pseudo labels tailored for object detection.
We dynamically adjust the thresholds used to generate pseudo labels and reweight loss functions for each category to alleviate the class imbalance problem.
Our approach improves supervised baselines by up to 10% AP using only 1-10% labeled data from COCO.
arXiv Detail & Related papers (2021-06-01T01:32:03Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
Existing Unsupervised Domain Adaptation (UDA) methods presumes source and target domain data to be simultaneously available during training.
A pre-trained source model is always considered to be available, even though performing poorly on target due to the well-known domain shift problem.
We propose a unified method to tackle adaptive noise filtering and pseudo-label refinement.
arXiv Detail & Related papers (2021-03-29T22:18:34Z) - A Free Lunch for Unsupervised Domain Adaptive Object Detection without
Source Data [69.091485888121]
Unsupervised domain adaptation assumes that source and target domain data are freely available and usually trained together to reduce the domain gap.
We propose a source data-free domain adaptive object detection (SFOD) framework via modeling it into a problem of learning with noisy labels.
arXiv Detail & Related papers (2020-12-10T01:42:35Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
We introduce a method that focuses on the semantic consistency under transformation of target data.
Our model first discovers confident predictions and performs classification with pseudo-labels.
As a result, unlabeled data can be classified into discriminative classes coincided with either source classes or unknown classes.
arXiv Detail & Related papers (2020-10-01T10:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.