Uncertainty-Aware Pseudo-Label Filtering for Source-Free Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2403.11256v1
- Date: Sun, 17 Mar 2024 16:19:40 GMT
- Title: Uncertainty-Aware Pseudo-Label Filtering for Source-Free Unsupervised Domain Adaptation
- Authors: Xi Chen, Haosen Yang, Huicong Zhang, Hongxun Yao, Xiatian Zhu,
- Abstract summary: Source-free unsupervised domain adaptation (SFUDA) aims to enable the utilization of a pre-trained source model in an unlabeled target domain without access to source data.
We propose a method called Uncertainty-aware Pseudo-label-filtering Adaptation (UPA) to efficiently address this issue in a coarse-to-fine manner.
- Score: 45.53185386883692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free unsupervised domain adaptation (SFUDA) aims to enable the utilization of a pre-trained source model in an unlabeled target domain without access to source data. Self-training is a way to solve SFUDA, where confident target samples are iteratively selected as pseudo-labeled samples to guide target model learning. However, prior heuristic noisy pseudo-label filtering methods all involve introducing extra models, which are sensitive to model assumptions and may introduce additional errors or mislabeling. In this work, we propose a method called Uncertainty-aware Pseudo-label-filtering Adaptation (UPA) to efficiently address this issue in a coarse-to-fine manner. Specially, we first introduce a sample selection module named Adaptive Pseudo-label Selection (APS), which is responsible for filtering noisy pseudo labels. The APS utilizes a simple sample uncertainty estimation method by aggregating knowledge from neighboring samples and confident samples are selected as clean pseudo-labeled. Additionally, we incorporate Class-Aware Contrastive Learning (CACL) to mitigate the memorization of pseudo-label noise by learning robust pair-wise representation supervised by pseudo labels. Through extensive experiments conducted on three widely used benchmarks, we demonstrate that our proposed method achieves competitive performance on par with state-of-the-art SFUDA methods. Code is available at https://github.com/chenxi52/UPA.
Related papers
- Less is More: Pseudo-Label Filtering for Continual Test-Time Adaptation [13.486951040331899]
Continual Test-Time Adaptation (CTTA) aims to adapt a pre-trained model to a sequence of target domains during the test phase without accessing the source data.
Existing methods rely on constructing pseudo-labels for all samples and updating the model through self-training.
We propose Pseudo Labeling Filter (PLF) to improve the quality of pseudo-labels.
arXiv Detail & Related papers (2024-06-03T04:09:36Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free object detection (SFOD) aims to adapt a source-trained detector to an unlabeled target domain without access to the labeled source data.
Current SFOD methods utilize a threshold-based pseudo-label approach in the adaptation phase.
We propose a new approach to take full advantage of pseudo-labels by introducing high and low confidence thresholds.
arXiv Detail & Related papers (2023-10-19T12:59:55Z) - Towards Self-Adaptive Pseudo-Label Filtering for Semi-Supervised
Learning [13.02771721554445]
We propose a Self-Adaptive Pseudo-Label Filter (SPF) to improve the quality of pseudo labels.
With an online mixture model, we weight each pseudo-labeled sample by the posterior of it being correct, which takes into consideration the confidence distribution.
Our SPF evolves together with the deep neural network without manual tuning.
arXiv Detail & Related papers (2023-09-18T13:57:16Z) - Refined Pseudo labeling for Source-free Domain Adaptive Object Detection [9.705172026751294]
Source-freeD is proposed to adapt source-trained detectors to target domains with only unlabeled target data.
Existing source-freeD methods typically utilize pseudo labeling, where the performance heavily relies on the selection of confidence threshold.
We present a category-aware adaptive threshold estimation module, which adaptively provides the appropriate threshold for each category.
arXiv Detail & Related papers (2023-03-07T08:31:42Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Uncertainty-aware Mean Teacher for Source-free Unsupervised Domain
Adaptive 3D Object Detection [6.345037597566315]
Pseudo-label based self training approaches are a popular method for source-free unsupervised domain adaptation.
We propose an uncertainty-aware mean teacher framework which implicitly filters incorrect pseudo-labels during training.
arXiv Detail & Related papers (2021-09-29T18:17:09Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
Existing Unsupervised Domain Adaptation (UDA) methods presumes source and target domain data to be simultaneously available during training.
A pre-trained source model is always considered to be available, even though performing poorly on target due to the well-known domain shift problem.
We propose a unified method to tackle adaptive noise filtering and pseudo-label refinement.
arXiv Detail & Related papers (2021-03-29T22:18:34Z) - Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain
Adaptation [87.60688582088194]
We propose a novel Self-Supervised Noisy Label Learning method.
Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin.
arXiv Detail & Related papers (2021-02-23T10:51:45Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.