Non-Hermitian description of sharp quantum resetting
- URL: http://arxiv.org/abs/2303.03790v2
- Date: Mon, 20 Mar 2023 12:39:51 GMT
- Title: Non-Hermitian description of sharp quantum resetting
- Authors: Ranjan Modak and S. Aravinda
- Abstract summary: We study a non-interacting quantum particle, moving on a one-dimensional lattice, which is subjected to repetitive measurements.
We investigate the consequence when such motion is interrupted and restarted from the same initial configuration, known as the quantum resetting problem.
We show that such systems can be described by the time evolution under certain time-dependent non-Hermitian Hamiltonians.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a non-interacting quantum particle, moving on a one-dimensional
lattice, which is subjected to repetitive measurements. We investigate the
consequence when such motion is interrupted and restarted from the same initial
configuration, known as the quantum resetting problem. We show that such
systems can be described by the time evolution under certain time-dependent
non-Hermitian Hamiltonians. We construct two such Hamiltonians and compare the
results with the exact dynamics. Using this effective non-Hermitian description
we evaluate the timescale of the survival probability as well as the optimal
resetting time for the system.
Related papers
- A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Time-Dependent Hamiltonian Reconstruction using Continuous Weak
Measurements [0.0]
We experimentally demonstrate that an a priori unknown, time-dependent Hamiltonian can be reconstructed from continuous weak measurements.
In contrast to previous work, our technique does not require interruptions, which would distort the recovered Hamiltonian.
Our work opens up novel applications for continuous weak measurements, such as studying non-idealities in gates.
arXiv Detail & Related papers (2022-11-14T19:41:48Z) - Entanglement timescale and mixedness in non-Hermitian quantum systems [0.0]
We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems.
We find that the non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input states.
Our results find applications to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and $mathcalPT$-symmetric quantum field theory.
arXiv Detail & Related papers (2022-09-23T15:53:07Z) - A Quantum Informational Approach to the Problem of Time [0.0]
We argue using quantum information theory that the Hamiltonian constraint in quantum gravity cannot probe change.
If the time-reparametization symmetry is spontaneously broken due to the formation of quantum cosmological time crystals, these problems can be resolved.
arXiv Detail & Related papers (2021-12-02T01:30:53Z) - Finite resolution ancilla-assisted measurements of quantum work
distributions [77.34726150561087]
We consider an ancilla-assisted protocol measuring the work done on a quantum system driven by a time-dependent Hamiltonian.
We consider system Hamiltonians which both commute and do not commute at different times, finding corrections to fluctuation relations like the Jarzynski equality and the Crooks relation.
arXiv Detail & Related papers (2021-11-30T15:08:25Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum Dynamics under continuous projective measurements: non-Hermitian
description and the continuous space limit [0.0]
The time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol.
For a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2020-12-02T13:29:22Z) - Stochastic process emerged from lattice fermion systems by repeated
measurements and large-time limit [0.0]
In quantum theory, measurements may suppress Hamiltonian dynamics of a system.
In the present paper, we consider the long time repeated measurements and the dynamics of quantum body systems.
arXiv Detail & Related papers (2020-07-28T01:46:36Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.