論文の概要: Leveraging Pre-trained AudioLDM for Sound Generation: A Benchmark Study
- arxiv url: http://arxiv.org/abs/2303.03857v3
- Date: Mon, 29 Jul 2024 15:29:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 01:26:28.694124
- Title: Leveraging Pre-trained AudioLDM for Sound Generation: A Benchmark Study
- Title(参考訳): 音生成のための事前学習オーディオLDMの活用:ベンチマークによる検討
- Authors: Yi Yuan, Haohe Liu, Jinhua Liang, Xubo Liu, Mark D. Plumbley, Wenwu Wang,
- Abstract要約: 本稿では,AudioLDMを用いた音声生成における事前学習のメリットについて検討する。
本研究では,事前学習したAudioLDMの利点,特にデータ共有シナリオの利点を実証する。
様々な頻繁に使用されるデータセットに対して,音生成タスクをベンチマークする。
- 参考スコア(独自算出の注目度): 33.10311742703679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have recently achieved breakthroughs in sound generation. Despite the outstanding sample quality, current sound generation models face issues on small-scale datasets (e.g., overfitting), significantly limiting performance. In this paper, we make the first attempt to investigate the benefits of pre-training on sound generation with AudioLDM, the cutting-edge model for audio generation, as the backbone. Our study demonstrates the advantages of the pre-trained AudioLDM, especially in data-scarcity scenarios. In addition, the baselines and evaluation protocol for sound generation systems are not consistent enough to compare different studies directly. Aiming to facilitate further study on sound generation tasks, we benchmark the sound generation task on various frequently-used datasets. We hope our results on transfer learning and benchmarks can provide references for further research on conditional sound generation.
- Abstract(参考訳): ディープニューラルネットワークは、最近、音声生成のブレークスルーを達成した。
優れたサンプル品質にもかかわらず、現在の音響生成モデルは、小規模データセット(例えば過剰適合)に問題に直面し、性能を著しく制限する。
本稿では,オーディオ生成の最先端モデルであるAudioLDMをバックボーンとして,音声生成の事前学習の利点について検討する。
本研究では,事前学習したAudioLDMの利点,特にデータ共有シナリオの利点を実証する。
さらに, 音響システムにおけるベースラインと評価プロトコルは, 異なる研究を直接比較するのに十分な整合性を持っていない。
音声生成タスクのさらなる研究を促進するため,様々な頻繁なデータセット上で音生成タスクをベンチマークする。
我々は,移動学習とベンチマークの結果が,条件付き音声生成のさらなる研究の参考になることを期待している。
関連論文リスト
- Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF)は、複数のモードから実際の音響室データをキャプチャする新しいデータセットである。
RAFは密集した室内音響データを提供する最初のデータセットである。
論文 参考訳(メタデータ) (2024-03-27T17:59:56Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Generative Pre-training for Speech with Flow Matching [81.59952572752248]
我々は,フローマッチングとマスク条件を併用した60k時間の無転写音声に対して,SpeechFlowという生成モデルを事前学習した。
実験結果から,事前学習した生成モデルをタスク固有のデータで微調整し,音声強調,分離,合成に関する既存の専門家モデルに適合または超えることを示す。
論文 参考訳(メタデータ) (2023-10-25T03:40:50Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Retrieval-Augmented Text-to-Audio Generation [36.328134891428085]
本稿では,AudioLDMのような最先端モデルが,その世代性能に偏っていることを示す。
本稿では,TTAモデルに対する単純な検索拡張手法を提案する。
Re-AudioLDMは、複雑なシーン、稀なオーディオクラス、さらには目に見えないオーディオタイプに対して、現実的なオーディオを生成することができる。
論文 参考訳(メタデータ) (2023-09-14T22:35:39Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
音響マッチングは、ターゲットの音響環境に録音されたかのように、音声クリップを再合成することを目的としている。
そこで本研究では,対象のシーン画像と音声のみを含む,視覚的音響マッチングのための自己教師型アプローチを提案する。
提案手法は,条件付きGANフレームワークと新しいメトリクスを用いて,室内音響をアンタングル化し,音をターゲット環境に再合成する方法を共同で学習する。
論文 参考訳(メタデータ) (2023-07-27T17:59:59Z) - Analysing the Impact of Audio Quality on the Use of Naturalistic
Long-Form Recordings for Infant-Directed Speech Research [62.997667081978825]
早期言語習得のモデリングは、幼児が言語スキルをブートストラップする方法を理解することを目的としている。
近年の進歩により、より自然主義的なトレーニングデータを計算モデルに利用できるようになった。
音質がこれらのデータに対する分析やモデリング実験にどう影響するかは、現時点では不明である。
論文 参考訳(メタデータ) (2023-05-03T08:25:37Z) - BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping [19.071463356974387]
この研究は、ブートストラップによる自己教師型学習に基づく既存の手法を拡張し、様々なエンコーダアーキテクチャを提案し、異なる事前学習データセットを使用することの効果を探る。
本稿では,手工芸とデータ駆動型学習音声機能を組み合わせたハイブリッド音声表現を提案する。
提案したすべての表現は、聴覚シーン分類とタイムスタンプ検出タスクのためのHEAR NeurIPS 2021チャレンジで評価された。
論文 参考訳(メタデータ) (2022-06-24T02:26:40Z) - Conditional Sound Generation Using Neural Discrete Time-Frequency
Representation Learning [42.95813372611093]
本稿では,ニューラル離散時間周波数表現学習を用いて,音のクラスに調和した音を生成することを提案する。
これにより、長い範囲の依存関係をモデル化し、音クリップ内に局所的なきめ細かい構造を保持するという利点がある。
論文 参考訳(メタデータ) (2021-07-21T10:31:28Z) - Noise Robust TTS for Low Resource Speakers using Pre-trained Model and
Speech Enhancement [31.33429812278942]
提案したエンドツーエンド音声合成モデルでは,話者埋め込みと雑音表現をそれぞれモデル話者と雑音情報に対する条件入力として利用する。
実験結果から,提案手法により生成した音声は,直接調整したマルチ話者音声合成モデルよりも主観評価が優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-26T06:14:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。