Indefinite causal key distribution
- URL: http://arxiv.org/abs/2303.03893v2
- Date: Tue, 26 Nov 2024 16:27:34 GMT
- Title: Indefinite causal key distribution
- Authors: Hector Spencer-Wood,
- Abstract summary: We propose a quantum key distribution (QKD) protocol that is carried out in an indefinite causal order (ICO)
We find that it is possible to detect eavesdroppers without publicly comparing any information about the key.
We also prove the security of this protocol against a class of individual eavesdropping attacks.
- Score: 0.0
- License:
- Abstract: We propose a quantum key distribution (QKD) protocol that is carried out in an indefinite causal order (ICO). In QKD, one considers a setup in which two parties, Alice and Bob, share a key with one another in such a way that they can detect whether an eavesdropper, Eve, has learnt anything about the key. To our knowledge, in all QKD protocols proposed until now, Eve is detected by publicly comparing a subset of Alice and Bob's key and checking for errors. We find that a consequence of our protocol is that it is possible to detect eavesdroppers without publicly comparing any information about the key. Indeed, we prove that it is not possible for eavesdroppers, performing any individual attack, to extract useful information about the shared key without inducing a nonzero probability of being detected. We also prove the security of this protocol against a class of individual eavesdropping attacks. The role ICO plays in causing unusual phenomena in quantum technologies is an important question. By considering it we find a two-way QKD protocol that exhibits a similar private detection feature, albeit with some interesting differences. After noting some implications of these differences and discussing some of the practicalities of our protocol, we conclude that this work is best considered as a first step in applying quantum cryptographic ideas in an ICO.
Related papers
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - The Quantum Cryptography Approach: Unleashing the Potential of Quantum
Key Reconciliation Protocol for Secure Communication [7.318072482453136]
Quantum Key Distribution (QKD) has been recognized as the most important breakthrough in quantum cryptography.
This paper proposes a novel method that allows users to communicate while generating the secure keys and securing the transmission without any leakage of the data.
arXiv Detail & Related papers (2024-01-17T05:41:17Z) - Robust Quantum Public-Key Encryption with Applications to Quantum Key
Distribution [16.06159998475861]
Quantum key distribution (QKD) allows Alice and Bob to agree on a shared secret key, while communicating over a public (untrusted) quantum channel.
It has two main advantages: (i) The key is unconditionally hidden to the eyes of any attacker, and (ii) its security assumes only the existence of authenticated classical channels.
We propose a two-message QKD protocol that satisfies everlasting security, assuming only the existence of quantum-secure one-way functions.
arXiv Detail & Related papers (2023-04-06T11:14:55Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Improved Semi-Quantum Key Distribution with Two Almost-Classical Users [1.827510863075184]
We revisit a mediated semi-quantum key distribution protocol introduced by Massa et al.
We show how this protocol may be extended to improve its efficiency and also its noise tolerance.
We evaluate the protocol's performance in a variety of lossy and noisy channels.
arXiv Detail & Related papers (2022-03-20T14:41:14Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Noiseless attack and counterfactual security of quantum key distribution [0.0]
We show that the efficiency of counterfactual QKD protocols can be enhanced by including non-counterfactual bits.
We show how this problem can be resolved in a simple way, whereby the non-counterfactual key bits are indicated to be secure.
This method of enhancing the key rate is shown to be applicable to various existing quantum counterfactual key distribution protocols.
arXiv Detail & Related papers (2020-12-09T16:48:43Z) - Two-way Unclonable Encryption with a vulnerable sender [2.355458445741348]
Unclonable Encryption, introduced by Gottesman in 2003, is a quantum protocol that guarantees the secrecy of a successfully transferred classical message.
We propose an Unclonable Encryption protocol with the additional property that the sender's key material is allowed to leak even in the case of an unsuccessful run.
arXiv Detail & Related papers (2020-10-21T08:35:49Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.