Robust Quantum Public-Key Encryption with Applications to Quantum Key
Distribution
- URL: http://arxiv.org/abs/2304.02999v2
- Date: Tue, 2 Jan 2024 10:52:29 GMT
- Title: Robust Quantum Public-Key Encryption with Applications to Quantum Key
Distribution
- Authors: Giulio Malavolta and Michael Walter
- Abstract summary: Quantum key distribution (QKD) allows Alice and Bob to agree on a shared secret key, while communicating over a public (untrusted) quantum channel.
It has two main advantages: (i) The key is unconditionally hidden to the eyes of any attacker, and (ii) its security assumes only the existence of authenticated classical channels.
We propose a two-message QKD protocol that satisfies everlasting security, assuming only the existence of quantum-secure one-way functions.
- Score: 16.06159998475861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) allows Alice and Bob to agree on a shared
secret key, while communicating over a public (untrusted) quantum channel.
Compared to classical key exchange, it has two main advantages: (i) The key is
unconditionally hidden to the eyes of any attacker, and (ii) its security
assumes only the existence of authenticated classical channels which, in
practice, can be realized using Minicrypt assumptions, such as the existence of
digital signatures. On the flip side, QKD protocols typically require multiple
rounds of interactions, whereas classical key exchange can be realized with the
minimal amount of two messages using public-key encryption. A long-standing
open question is whether QKD requires more rounds of interaction than classical
key exchange. In this work, we propose a two-message QKD protocol that
satisfies everlasting security, assuming only the existence of quantum-secure
one-way functions. That is, the shared key is unconditionally hidden, provided
computational assumptions hold during the protocol execution. Our result
follows from a new construction of quantum public-key encryption (QPKE) whose
security, much like its classical counterpart, only relies on authenticated
classical channels.
Related papers
- Hybrid Quantum Cryptography from Communication Complexity [0.43695508295565777]
We build a key distribution protocol called HM-QCT from the Hidden Matching problem.
We show that the security of HM-QCT against arbitrary i.i.d. attacks can be reduced to the difficulty of solving the underlying Hidden Matching problem.
Remarkably, the scheme remains secure with up to $mathcalObig( fracsqrtnlog(n)big)$ input photons for each channel use.
arXiv Detail & Related papers (2023-11-15T18:03:15Z) - Towards the Impossibility of Quantum Public Key Encryption with
Classical Keys from One-Way Functions [0.5999777817331317]
It has been recently shown that public-key encryption (PKE) from one-way functions (OWF) is possible if we consider quantum public keys.
In this paper, we focus on black-box separation for PKE with classical public key and quantum ciphertext from OWF.
arXiv Detail & Related papers (2023-11-06T20:41:25Z) - Quantum Key Leasing for PKE and FHE with a Classical Lessor [19.148581164364387]
We consider the problem of secure key leasing, also known as revocable cryptography.
This problem aims to leverage unclonable nature of quantum information.
We construct a secure key leasing scheme to lease a decryption key of a (classical) public-key, homomorphic encryption scheme.
arXiv Detail & Related papers (2023-10-22T15:25:29Z) - Quantum Public-Key Encryption with Tamper-Resilient Public Keys from One-Way Functions [12.45203887838637]
We construct quantum public-key encryption from one-way functions.
In our construction, public keys are quantum, but ciphertexts are classical.
arXiv Detail & Related papers (2023-04-04T13:57:17Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - A Simple Construction of Quantum Public-Key Encryption from
Quantum-Secure One-Way Functions [13.677574076242188]
We show that quantum PKE can be constructed from any quantum-secure one-way function.
Our construction is simple, uses only classical ciphertexts, and satisfies the strong notion of CCA security.
arXiv Detail & Related papers (2023-03-02T10:45:16Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.