論文の概要: System Theoretic View on Uncertainties
- arxiv url: http://arxiv.org/abs/2303.04042v1
- Date: Tue, 7 Mar 2023 16:51:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 14:37:50.532215
- Title: System Theoretic View on Uncertainties
- Title(参考訳): 不確実性に関するシステム理論
- Authors: Roman Gansch, Ahmad Adee
- Abstract要約: 本稿では,性能制限に対処するシステム理論アプローチを提案する。
我々は不確実性、すなわち知識の欠如に基づく分類を根本原因とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexity of the operating environment and required technologies for
highly automated driving is unprecedented. A different type of threat to safe
operation besides the fault-error-failure model by Laprie et al. arises in the
form of performance limitations. We propose a system theoretic approach to
handle these and derive a taxonomy based on uncertainty, i.e. lack of
knowledge, as a root cause. Uncertainty is a threat to the dependability of a
system, as it limits our ability to assess its dependability properties. We
distinguish uncertainties by aleatory (inherent to probabilistic models),
epistemic (lack of model parameter knowledge) and ontological (incompleteness
of models) in order to determine strategies and methods to cope with them.
Analogous to the taxonomy of Laprie et al. we cluster methods into uncertainty
prevention (use of elements with well-known behavior, avoiding architectures
prone to emergent behavior, restriction of operational design domain, etc.),
uncertainty removal (during design time by design of experiment, etc. and after
release by field observation, continuous updates, etc.), uncertainty tolerance
(use of redundant architectures with diverse uncertainties, uncertainty aware
deep learning, etc.) and uncertainty forecasting (estimation of residual
uncertainty, etc.).
- Abstract(参考訳): 運転環境の複雑さと高度に自動化された運転に必要な技術は前例がない。
Laprieらによるフォールト・エラー・障害モデル以外の、安全な運用に対する別のタイプの脅威は、パフォーマンス制限の形で発生します。
そこで本研究では,不確実性,すなわち知識の欠如を根源として分類法を導出するためのシステム理論的手法を提案する。
不確実性はシステムの依存性に対する脅威であり、その依存性特性を評価する能力を制限する。
我々は,不確かさを経験的(確率的モデルに忠実),認識論的(モデルパラメータ知識の欠如),オントロジ的(モデルの不完全性)によって区別し,それに対処するための戦略と方法を決定する。
Analogous to the taxonomy of Laprie et al. we cluster methods into uncertainty prevention (use of elements with well-known behavior, avoiding architectures prone to emergent behavior, restriction of operational design domain, etc.), uncertainty removal (during design time by design of experiment, etc. and after release by field observation, continuous updates, etc.), uncertainty tolerance (use of redundant architectures with diverse uncertainties, uncertainty aware deep learning, etc.) and uncertainty forecasting (estimation of residual uncertainty, etc.).
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Entropy-Based Uncertainty Modeling for Trajectory Prediction in Autonomous Driving [9.365269316773219]
我々は、不確実性の定量化、分解、およびモデル構成の影響に焦点を当てた全体論的アプローチを採用する。
提案手法は,不確実性を測定するための理論に基づく情報理論に基づく手法である。
我々はnuScenesデータセットに関する広範な実験を行い、異なるモデルアーキテクチャと構成が不確実性定量化とモデルロバスト性にどのように影響するかを評価する。
論文 参考訳(メタデータ) (2024-10-02T15:02:32Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
本稿では,効率的かつ高精度な不確実性定量化を深層学習に基づく代理モデルに統合する手法を提案する。
本手法は,フォワード問題と逆問題の両方に対して,堅牢かつ効率的な不確実性定量化機能を備えたディープラーニングに基づく代理モデルを提案する。
提案手法は, 長期予測を含むシナリオに適合し, 拡張された自己回帰ロールアウトに対する不確かさの伝播に優れる。
論文 参考訳(メタデータ) (2024-02-13T11:22:59Z) - Identifying Drivers of Predictive Aleatoric Uncertainty [2.5311562666866494]
本稿では,予測的アレタリック不確実性を説明するための簡単なアプローチを提案する。
我々は、ガウス出力分布にニューラルネットワークを適用することにより、不確実性を予測分散として推定する。
我々は、実世界のデータセットを含むニュアンスなベンチマーク分析を用いて、この結果の定量化を行う。
論文 参考訳(メタデータ) (2023-12-12T13:28:53Z) - Failure Detection for Motion Prediction of Autonomous Driving: An
Uncertainty Perspective [12.17821905210185]
運動予測は安全で効率的な自動運転に不可欠である。
複雑な人工知能モデルの説明不可能性と不確実性は予測不可能な失敗につながる可能性がある。
不確実性の観点からの動作予測のための故障検出の枠組みを提案する。
論文 参考訳(メタデータ) (2023-01-11T12:01:08Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - Deep Learning based Uncertainty Decomposition for Real-time Control [9.067368638784355]
本稿では,ディープラーニングを用いたトレーニングデータの欠如を検出する新しい手法を提案する。
合成および実世界のデータセットに対する既存のアプローチに対する利点を示す。
さらに、シミュレーションされたクアッドコプターにオンラインデータ効率制御を展開させる上で、この不確実性推定の実用性を実証する。
論文 参考訳(メタデータ) (2020-10-06T10:46:27Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
本稿では,不確実性推定を最先端のニューラルネットワーク手法のクラスに統合する実践的アプローチを提案する。
提案手法は,高次元データに共通する「非オーバーラップ」の状況に優雅に対処できることを示す。
正確なモデリングの不確実性は、過度に自信を持ち、潜在的に有害なレコメンデーションを与えるのを防ぐことができる。
論文 参考訳(メタデータ) (2020-07-01T00:37:41Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
アンカーベース物体検出のための既存の不確実性推定手法にはいくつかの制限がある。
アンカーフリー物体検出のためのUADと呼ばれる新しい位置推定不確実性推定手法を提案する。
本手法は,ボックスオフセットの4方向の不確かさを均一に捉え,どの方向が不確実であるかを判断する。
論文 参考訳(メタデータ) (2020-06-28T13:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。