System Theoretic View on Uncertainties
- URL: http://arxiv.org/abs/2303.04042v1
- Date: Tue, 7 Mar 2023 16:51:24 GMT
- Title: System Theoretic View on Uncertainties
- Authors: Roman Gansch, Ahmad Adee
- Abstract summary: We propose a system theoretic approach to handle performance limitations.
We derive a taxonomy based on uncertainty, i.e. lack of knowledge, as a root cause.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexity of the operating environment and required technologies for
highly automated driving is unprecedented. A different type of threat to safe
operation besides the fault-error-failure model by Laprie et al. arises in the
form of performance limitations. We propose a system theoretic approach to
handle these and derive a taxonomy based on uncertainty, i.e. lack of
knowledge, as a root cause. Uncertainty is a threat to the dependability of a
system, as it limits our ability to assess its dependability properties. We
distinguish uncertainties by aleatory (inherent to probabilistic models),
epistemic (lack of model parameter knowledge) and ontological (incompleteness
of models) in order to determine strategies and methods to cope with them.
Analogous to the taxonomy of Laprie et al. we cluster methods into uncertainty
prevention (use of elements with well-known behavior, avoiding architectures
prone to emergent behavior, restriction of operational design domain, etc.),
uncertainty removal (during design time by design of experiment, etc. and after
release by field observation, continuous updates, etc.), uncertainty tolerance
(use of redundant architectures with diverse uncertainties, uncertainty aware
deep learning, etc.) and uncertainty forecasting (estimation of residual
uncertainty, etc.).
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Entropy-Based Uncertainty Modeling for Trajectory Prediction in Autonomous Driving [9.365269316773219]
We adopt a holistic approach that focuses on uncertainty quantification, decomposition, and the influence of model composition.
Our method is based on a theoretically grounded information-theoretic approach to measure uncertainty.
We conduct extensive experiments on the nuScenes dataset to assess how different model architectures and configurations affect uncertainty quantification and model robustness.
arXiv Detail & Related papers (2024-10-02T15:02:32Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Identifying Drivers of Predictive Aleatoric Uncertainty [2.5311562666866494]
We present a simple approach to explain predictive aleatoric uncertainties.
We estimate uncertainty as predictive variance by adapting a neural network with a Gaussian output distribution.
We quantify our findings with a nuanced benchmark analysis that includes real-world datasets.
arXiv Detail & Related papers (2023-12-12T13:28:53Z) - Failure Detection for Motion Prediction of Autonomous Driving: An
Uncertainty Perspective [12.17821905210185]
Motion prediction is essential for safe and efficient autonomous driving.
Inexplicability and uncertainty of complex artificial intelligence models may lead to unpredictable failures.
We propose a framework of failure detection for motion prediction from the uncertainty perspective.
arXiv Detail & Related papers (2023-01-11T12:01:08Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Deep Learning based Uncertainty Decomposition for Real-time Control [9.067368638784355]
We propose a novel method for detecting the absence of training data using deep learning.
We show its advantages over existing approaches on synthetic and real-world datasets.
We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter.
arXiv Detail & Related papers (2020-10-06T10:46:27Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
We introduce a practical approach for integrating uncertainty estimation into a class of state-of-the-art neural network methods.
We show that our methods enable us to deal gracefully with situations of "no-overlap", common in high-dimensional data.
We show that correctly modeling uncertainty can keep us from giving overconfident and potentially harmful recommendations.
arXiv Detail & Related papers (2020-07-01T00:37:41Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
There are several limitations of the existing uncertainty estimation methods for anchor-based object detection.
We propose a new localization uncertainty estimation method called UAD for anchor-free object detection.
Our method captures the uncertainty in four directions of box offsets that are homogeneous, so that it can tell which direction is uncertain.
arXiv Detail & Related papers (2020-06-28T13:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.