Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
- URL: http://arxiv.org/abs/2411.01639v1
- Date: Sun, 03 Nov 2024 17:32:00 GMT
- Title: Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
- Authors: Neel P. Bhatt, Yunhao Yang, Rohan Siva, Daniel Milan, Ufuk Topcu, Zhangyang Wang,
- Abstract summary: We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
- Score: 54.40508478482667
- License:
- Abstract: Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans. To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems.
Related papers
- Uncertainty Quantification in Stereo Matching [61.73532883992135]
We propose a new framework for stereo matching and its uncertainty quantification.
We adopt Bayes risk as a measure of uncertainty and estimate data and model uncertainty separately.
We apply our uncertainty method to improve prediction accuracy by selecting data points with small uncertainties.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - SAUP: Situation Awareness Uncertainty Propagation on LLM Agent [52.444674213316574]
Large language models (LLMs) integrated into multistep agent systems enable complex decision-making processes across various applications.
Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multistep decision-making process and the dynamic interactions between agents and their environments.
We propose SAUP, a novel framework that propagates uncertainty through each step of an LLM-based agent's reasoning process.
arXiv Detail & Related papers (2024-12-02T01:31:13Z) - Entropy-Based Uncertainty Modeling for Trajectory Prediction in Autonomous Driving [9.365269316773219]
We adopt a holistic approach that focuses on uncertainty quantification, decomposition, and the influence of model composition.
Our method is based on a theoretically grounded information-theoretic approach to measure uncertainty.
We conduct extensive experiments on the nuScenes dataset to assess how different model architectures and configurations affect uncertainty quantification and model robustness.
arXiv Detail & Related papers (2024-10-02T15:02:32Z) - End-to-End Conformal Calibration for Optimization Under Uncertainty [32.844953018302874]
This paper develops an end-to-end framework to learn the uncertainty estimates for conditional optimization.
In addition, we propose to represent arbitrary convex uncertainty sets with partially convex neural networks.
Our approach consistently improves upon two-stage-then-optimize.
arXiv Detail & Related papers (2024-09-30T17:38:27Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
In this work, the formulation of Bayesian autoencoders (BAEs) is adopted to quantify the total anomaly uncertainty.
To evaluate the quality of uncertainty, we consider the task of classifying anomalies with the additional option of rejecting predictions of high uncertainty.
Our experiments demonstrate the effectiveness of the BAE and total anomaly uncertainty on a set of benchmark datasets and two real datasets for manufacturing.
arXiv Detail & Related papers (2022-02-25T12:20:04Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.