Robustness-preserving Lifelong Learning via Dataset Condensation
- URL: http://arxiv.org/abs/2303.04183v1
- Date: Tue, 7 Mar 2023 19:09:03 GMT
- Title: Robustness-preserving Lifelong Learning via Dataset Condensation
- Authors: Jinghan Jia and Yihua Zhang and Dogyoon Song and Sijia Liu and Alfred
Hero
- Abstract summary: 'catastrophic forgetting' refers to a notorious dilemma between improving model accuracy over new data and retaining accuracy over previous data.
We propose a new memory-replay LL strategy that leverages modern bi-level optimization techniques to determine the 'coreset' of the current data.
We term the resulting LL framework 'Data-Efficient Robustness-Preserving LL' (DERPLL)
Experimental results show that DERPLL outperforms the conventional coreset-guided LL baseline.
- Score: 11.83450966328136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lifelong learning (LL) aims to improve a predictive model as the data source
evolves continuously. Most work in this learning paradigm has focused on
resolving the problem of 'catastrophic forgetting,' which refers to a notorious
dilemma between improving model accuracy over new data and retaining accuracy
over previous data. Yet, it is also known that machine learning (ML) models can
be vulnerable in the sense that tiny, adversarial input perturbations can
deceive the models into producing erroneous predictions. This motivates the
research objective of this paper - specification of a new LL framework that can
salvage model robustness (against adversarial attacks) from catastrophic
forgetting. Specifically, we propose a new memory-replay LL strategy that
leverages modern bi-level optimization techniques to determine the 'coreset' of
the current data (i.e., a small amount of data to be memorized) for ease of
preserving adversarial robustness over time. We term the resulting LL framework
'Data-Efficient Robustness-Preserving LL' (DERPLL). The effectiveness of DERPLL
is evaluated for class-incremental image classification using ResNet-18 over
the CIFAR-10 dataset. Experimental results show that DERPLL outperforms the
conventional coreset-guided LL baseline and achieves a substantial improvement
in both standard accuracy and robust accuracy.
Related papers
- UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
We argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions.
To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space.
arXiv Detail & Related papers (2021-06-23T10:52:29Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
Deep learning algorithms have been recently targeted by attackers due to their vulnerability.
Non-continuous deep models are still not robust against adversarial attacks.
We propose a novel objective/loss function, which enforces the features to lie under a specified margin to facilitate their prediction.
arXiv Detail & Related papers (2020-12-08T20:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.