UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2410.02719v1
- Date: Thu, 3 Oct 2024 17:39:38 GMT
- Title: UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation
- Authors: Zixuan Li, Jing Xiong, Fanghua Ye, Chuanyang Zheng, Xun Wu, Jianqiao Lu, Zhongwei Wan, Xiaodan Liang, Chengming Li, Zhenan Sun, Lingpeng Kong, Ngai Wong,
- Abstract summary: We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
- Score: 93.38604803625294
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG) that utilizes Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks. This span uncertainty enhances model calibration, improving robustness and mitigating semantic inconsistencies introduced by random chunking. Leveraging this insight, we propose an efficient unsupervised learning technique to train the retrieval model, alongside an effective data sampling and scaling strategy. UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results while using only 4% of the training data compared to other advanced open-source retrieval models under distribution shift settings. Our method demonstrates strong calibration through span uncertainty, leading to improved generalization and robustness in long-context RAG tasks. Additionally, UncertaintyRAG provides a lightweight retrieval model that can be integrated into any large language model with varying context window lengths, without the need for fine-tuning, showcasing the flexibility of our approach.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation [96.78845113346809]
Retrieval-augmented language models (RALMs) have shown strong performance and wide applicability in knowledge-intensive tasks.
This paper proposes SynCheck, a lightweight monitor that leverages fine-grained decoding dynamics to detect unfaithful sentences.
We also introduce FOD, a faithfulness-oriented decoding algorithm guided by beam search for long-form retrieval-augmented generation.
arXiv Detail & Related papers (2024-06-19T16:42:57Z) - Exploring the Interplay of Interpretability and Robustness in Deep Neural Networks: A Saliency-guided Approach [3.962831477787584]
Adversarial attacks pose a significant challenge to deploying deep learning models in safety-critical applications.
Maintaining model robustness while ensuring interpretability is vital for fostering trust and comprehension in these models.
This study investigates the impact of Saliency-guided Training on model robustness.
arXiv Detail & Related papers (2024-05-10T07:21:03Z) - Modeling uncertainty for Gaussian Splatting [21.836830270709]
We present the first framework for uncertainty estimation using Gaussian Splatting (GS)
We introduce a Variational Inference-based approach that seamlessly integrates uncertainty prediction into the common rendering pipeline of GS.
We also introduce the Area Under Sparsification Error (AUSE) as a new term in the loss function, enabling optimization of uncertainty estimation alongside image reconstruction.
arXiv Detail & Related papers (2024-03-27T11:45:08Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Robustness-preserving Lifelong Learning via Dataset Condensation [11.83450966328136]
'catastrophic forgetting' refers to a notorious dilemma between improving model accuracy over new data and retaining accuracy over previous data.
We propose a new memory-replay LL strategy that leverages modern bi-level optimization techniques to determine the 'coreset' of the current data.
We term the resulting LL framework 'Data-Efficient Robustness-Preserving LL' (DERPLL)
Experimental results show that DERPLL outperforms the conventional coreset-guided LL baseline.
arXiv Detail & Related papers (2023-03-07T19:09:03Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
offline reinforcement learning aims to learn to perform decision making from history data without active exploration.
Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset.
We consider a distributionally robust formulation of offline RL, focusing on robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings.
arXiv Detail & Related papers (2022-08-11T11:55:31Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.