論文の概要: Self-Supervised Learning for Group Equivariant Neural Networks
- arxiv url: http://arxiv.org/abs/2303.04427v1
- Date: Wed, 8 Mar 2023 08:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 14:51:22.415718
- Title: Self-Supervised Learning for Group Equivariant Neural Networks
- Title(参考訳): 群同変ニューラルネットワークの自己教師付き学習
- Authors: Yusuke Mukuta and Tatsuya Harada
- Abstract要約: 群同変ニューラルネットワーク(英: Group equivariant Neural Network)は、入力の変換で通勤する構造に制限されたモデルである。
自己教師型タスクには、同変プリテキストラベルと異変コントラスト損失という2つの概念を提案する。
標準画像認識ベンチマークの実験では、同変ニューラルネットワークが提案された自己教師型タスクを利用することを示した。
- 参考スコア(独自算出の注目度): 75.62232699377877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a method to construct pretext tasks for self-supervised
learning on group equivariant neural networks. Group equivariant neural
networks are the models whose structure is restricted to commute with the
transformations on the input. Therefore, it is important to construct pretext
tasks for self-supervised learning that do not contradict this equivariance. To
ensure that training is consistent with the equivariance, we propose two
concepts for self-supervised tasks: equivariant pretext labels and invariant
contrastive loss. Equivariant pretext labels use a set of labels on which we
can define the transformations that correspond to the input change. Invariant
contrastive loss uses a modified contrastive loss that absorbs the effect of
transformations on each input. Experiments on standard image recognition
benchmarks demonstrate that the equivariant neural networks exploit the
proposed equivariant self-supervised tasks.
- Abstract(参考訳): 本稿では,グループ同変ニューラルネットワーク上での自己教師あり学習のためのプリテキストタスクを構築する手法を提案する。
群同変ニューラルネットワークは、構造が入力の変換と可換に制限されるモデルである。
したがって、この等式に矛盾しない自己教師型学習のための前提課題を構築することが重要である。
トレーニングが同値であることを保証するため、同変プレテキストラベルと不変コントラスト損失という2つの自己教師型タスクの概念を提案する。
等変前文ラベルは、入力変化に対応する変換を定義することのできるラベルの集合を使用する。
不変コントラスト損失は、各入力に対する変換の影響を吸収する改良されたコントラスト損失を使用する。
標準画像認識ベンチマークの実験では、同変ニューラルネットワークが提案された同変自己教師タスクを利用することを示した。
関連論文リスト
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAEは,ポイントマスク自動エンコーダのグローバルな特徴表現を強化する,自己教師型学習フレームワークである。
PseudoNeg-MAE は ModelNet40 と ScanObjectNN のデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-24T07:57:21Z) - Using and Abusing Equivariance [10.70891251559827]
群同変畳み込みニューラルネットワークは, サブサンプリングを用いて, 対称性に等しくなることを学習する。
ネットワークの入力次元を1ピクセル程度に変化させることで、一般的に使われているアーキテクチャが正確には同値ではなく、ほぼ同値となるのに十分であることを示す。
論文 参考訳(メタデータ) (2023-08-22T09:49:26Z) - Restore Translation Using Equivariant Neural Networks [7.78895108256899]
本稿では,畳み込みニューラルネットワークに変換された(あるいは回転した)入力を復元するための事前分類器復元器を提案する。
復元子は、テンソル空間上の変換同変であるアフィン作用素に十分かつ必要な条件を与える理論的な結果に基づいている。
論文 参考訳(メタデータ) (2023-06-29T13:34:35Z) - Learning Rotation-Equivariant Features for Visual Correspondence [41.79256655501003]
本稿では,識別的回転不変記述子を抽出する自己教師型学習フレームワークを提案する。
グループ同変CNNを利用することで、回転同変の特徴とその配向を効果的に学習する。
本手法は,既存の回転不変ディスクリプタ間で,回転の異なる状態のマッチング精度を示す。
論文 参考訳(メタデータ) (2023-03-25T13:42:07Z) - Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift [91.38796390449504]
ドメインとラベルの組み合わせは、トレーニング中に観察されるのではなく、テスト環境に現れる。
我々は、同型の概念、同値性、および整合性の定義に基づく結合シフト問題の一意的な定式化を提供する。
論文 参考訳(メタデータ) (2022-08-03T12:31:31Z) - Unsupervised Learning of Group Invariant and Equivariant Representations [10.252723257176566]
グループ不変および同変表現学習を教師なし深層学習の分野に拡張する。
本稿では,エンコーダ・デコーダ・フレームワークに基づく一般学習戦略を提案する。このフレームワークでは,潜在表現を不変項と同変群アクション成分で分離する。
鍵となる考え方は、ネットワークがグループ不変表現にデータをエンコードしてデコードすることを学習し、さらに適切なグループ動作を予測して、入力と出力のポーズを調整して再構成タスクを解決することである。
論文 参考訳(メタデータ) (2022-02-15T16:44:21Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z) - Group Equivariant Neural Architecture Search via Group Decomposition and
Reinforcement Learning [17.291131923335918]
我々は、同値ニューラルネットワークの文脈において、新しい群論的結果を証明する。
また、計算複雑性を大幅に改善する同変ネットワークを構築するアルゴリズムを設計する。
我々は、性能を最大化するグループ同変ネットワークの探索に深層Q-ラーニングを用いる。
論文 参考訳(メタデータ) (2021-04-10T19:37:25Z) - Learning Invariances in Neural Networks [51.20867785006147]
ネットワークパラメータや拡張パラメータに関して,拡張性よりも分布をパラメータ化し,トレーニング損失を同時に最適化する方法を示す。
画像分類,回帰,セグメンテーション,分子特性予測における不均一性の正確なセットと範囲を,拡張の広い空間から復元することができる。
論文 参考訳(メタデータ) (2020-10-22T17:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。