論文の概要: Restore Translation Using Equivariant Neural Networks
- arxiv url: http://arxiv.org/abs/2306.16938v1
- Date: Thu, 29 Jun 2023 13:34:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 13:21:10.495923
- Title: Restore Translation Using Equivariant Neural Networks
- Title(参考訳): 等価ニューラルネットワークを用いた翻訳の復元
- Authors: Yihan Wang and Lijia Yu and Xiao-Shan Gao
- Abstract要約: 本稿では,畳み込みニューラルネットワークに変換された(あるいは回転した)入力を復元するための事前分類器復元器を提案する。
復元子は、テンソル空間上の変換同変であるアフィン作用素に十分かつ必要な条件を与える理論的な結果に基づいている。
- 参考スコア(独自算出の注目度): 7.78895108256899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Invariance to spatial transformations such as translations and rotations is a
desirable property and a basic design principle for classification neural
networks. However, the commonly used convolutional neural networks (CNNs) are
actually very sensitive to even small translations. There exist vast works to
achieve exact or approximate transformation invariance by designing
transformation-invariant models or assessing the transformations. These works
usually make changes to the standard CNNs and harm the performance on standard
datasets. In this paper, rather than modifying the classifier, we propose a
pre-classifier restorer to recover translated (or even rotated) inputs to the
original ones which will be fed into any classifier for the same dataset. The
restorer is based on a theoretical result which gives a sufficient and
necessary condition for an affine operator to be translational equivariant on a
tensor space.
- Abstract(参考訳): 翻訳や回転などの空間変換への不変性は、ニューラルネットワークを分類するための望ましい性質と基本的な設計原理である。
しかし、一般的に使用される畳み込みニューラルネットワーク(cnns)は、実際には小さな翻訳にも非常に敏感である。
変換不変モデルを設計したり、変換を評価することで、正確なあるいは近似的な変換不変性を達成するための膨大な研究がある。
これらの作業は通常、標準CNNを変更し、標準データセットのパフォーマンスを損なう。
本稿では、分類器を変更する代わりに、同じデータセットの任意の分類器に入力される元の入力に変換された(あるいは回転された)入力を復元する事前分類器復元器を提案する。
復元子は、テンソル空間上の変換同変であるアフィン作用素に十分かつ必要な条件を与える理論的な結果に基づいている。
関連論文リスト
- Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
群同変ニューラルネットワーク(英: Group equivariant Neural Network)は、入力の変換で通勤する構造に制限されたモデルである。
自己教師型タスクには、同変プリテキストラベルと異変コントラスト損失という2つの概念を提案する。
標準画像認識ベンチマークの実験では、同変ニューラルネットワークが提案された自己教師型タスクを利用することを示した。
論文 参考訳(メタデータ) (2023-03-08T08:11:26Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - Learning Invariant Representations for Equivariant Neural Networks Using
Orthogonal Moments [9.680414207552722]
標準畳み込みニューラルネットワーク(CNN)の畳み込み層は、翻訳と等価である。
近年,従来のCNNの層を同変畳み込み,プーリング,バッチ正規化に置き換えた新しいCNNのクラスが提案されている。
論文 参考訳(メタデータ) (2022-09-22T11:48:39Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
変換不変および距離保存初期表現は変換不変性を達成するのに十分であることを示す。
具体的には、多次元スケーリングを変更することで、変換不変かつ距離保存された初期点表現を実現する。
我々は、TinvNNが変換不変性を厳密に保証し、既存のニューラルネットワークと組み合わせられるほど汎用的で柔軟なことを証明した。
論文 参考訳(メタデータ) (2021-12-23T03:52:33Z) - Quantised Transforming Auto-Encoders: Achieving Equivariance to
Arbitrary Transformations in Deep Networks [23.673155102696338]
畳み込みニューラルネットワーク(CNN)は画像翻訳と等価である。
埋め込みは任意の等式関係を同時に従うオートエンコーダアーキテクチャを提案する。
いくつかのデータセット上で入力画像の変換版の再レンダリングに成功した結果を示す。
論文 参考訳(メタデータ) (2021-11-25T02:26:38Z) - Training or Architecture? How to Incorporate Invariance in Neural
Networks [14.162739081163444]
本稿では,グループ行動に関して,ネットワークアーキテクチャを確実に不変化する手法を提案する。
簡単に言えば、実際のネットワークにデータを送る前に、可能なトランスフォーメーションを“無効化”するつもりです。
このような手法の特性を解析し、等変ネットワークに拡張し、その利点を頑健さと計算効率の両面からいくつかの数値例で示す。
論文 参考訳(メタデータ) (2021-06-18T10:31:00Z) - Group Equivariant Subsampling [60.53371517247382]
サブサンプリングは、プールやストライド畳み込みの形で畳み込みニューラルネットワーク(CNN)で使用される。
まず、正確な翻訳同変CNNを構築するために使用できる翻訳同変サブサンプリング/アップサンプリング層を導入する。
次に、これらの層を一般群への変換を超えて一般化し、したがって群同変部分サンプリング/アップサンプリングを提案する。
論文 参考訳(メタデータ) (2021-06-10T16:14:00Z) - Learning Invariances in Neural Networks [51.20867785006147]
ネットワークパラメータや拡張パラメータに関して,拡張性よりも分布をパラメータ化し,トレーニング損失を同時に最適化する方法を示す。
画像分類,回帰,セグメンテーション,分子特性予測における不均一性の正確なセットと範囲を,拡張の広い空間から復元することができる。
論文 参考訳(メタデータ) (2020-10-22T17:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。