Radio astronomical images object detection and segmentation: A benchmark
on deep learning methods
- URL: http://arxiv.org/abs/2303.04506v2
- Date: Thu, 25 May 2023 13:12:07 GMT
- Title: Radio astronomical images object detection and segmentation: A benchmark
on deep learning methods
- Authors: Renato Sortino, Daniel Magro, Giuseppe Fiameni, Eva Sciacca, Simone
Riggi, Andrea DeMarco, Concetto Spampinato, Andrew M. Hopkins, Filomena
Bufano, Francesco Schillir\`o, Cristobal Bordiu, Carmelo Pino
- Abstract summary: In this work, we explore the performance of the most affirmed deep learning approaches, applied to astronomical images obtained by radio interferometric instrumentation, to solve the task of automatic source detection.
The goal is to provide an overview of existing techniques, in terms of prediction performance and computational efficiency, to scientists in the astrophysics community who would like to employ machine learning in their research.
- Score: 5.058069142315917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning has been successfully applied in various
scientific domains. Following these promising results and performances, it has
recently also started being evaluated in the domain of radio astronomy. In
particular, since radio astronomy is entering the Big Data era, with the advent
of the largest telescope in the world - the Square Kilometre Array (SKA), the
task of automatic object detection and instance segmentation is crucial for
source finding and analysis. In this work, we explore the performance of the
most affirmed deep learning approaches, applied to astronomical images obtained
by radio interferometric instrumentation, to solve the task of automatic source
detection. This is carried out by applying models designed to accomplish two
different kinds of tasks: object detection and semantic segmentation. The goal
is to provide an overview of existing techniques, in terms of prediction
performance and computational efficiency, to scientists in the astrophysics
community who would like to employ machine learning in their research.
Related papers
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Detection and Segmentation of Cosmic Objects Based on Adaptive
Thresholding and Back Propagation Neural Network [0.0]
We propose an Adaptive Thresholding Method (ATM) based segmentation and Back Propagation Neural Network (BPNN) based cosmic object detection.
We show how ATM and BPNN can be used to classify and detect the celestial objects.
arXiv Detail & Related papers (2023-08-02T04:02:46Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Advances on the classification of radio image cubes [4.443085464476228]
Modern radio telescopes will daily generate data sets on the scale of exabytes for systems like the Square Kilometre Array (SKA)
Massive data sets are a source of unknown and rare astrophysical phenomena that lead to discoveries.
Recently, there has been a surge in scientific publications focusing on the use of artificial intelligence in radio astronomy.
arXiv Detail & Related papers (2023-05-05T11:15:37Z) - Applications of AI in Astronomy [0.0]
We provide an overview of the use of Machine Learning (ML) and other AI methods in astronomy, astrophysics, and cosmology.
Over the past decade we have seen an exponential growth of the astronomical literature involving a variety of ML/AI applications.
As the data complexity continues to increase, we anticipate further advances leading towards a collaborative human-AI discovery.
arXiv Detail & Related papers (2022-12-03T00:38:59Z) - ASOD60K: Audio-Induced Salient Object Detection in Panoramic Videos [79.05486554647918]
We propose PV-SOD, a new task that aims to segment salient objects from panoramic videos.
In contrast to existing fixation-level or object-level saliency detection tasks, we focus on multi-modal salient object detection (SOD)
We collect the first large-scale dataset, named ASOD60K, which contains 4K-resolution video frames annotated with a six-level hierarchy.
arXiv Detail & Related papers (2021-07-24T15:14:20Z) - A Spacecraft Dataset for Detection, Segmentation and Parts Recognition [42.27081423489484]
In this paper, we release a dataset for spacecraft detection, instance segmentation and part recognition.
The main contribution of this work is the development of the dataset using images of space stations and satellites.
We also provide evaluations with state-of-the-art methods in object detection and instance segmentation as a benchmark for the dataset.
arXiv Detail & Related papers (2021-06-15T14:36:56Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Self-supervised Learning for Astronomical Image Classification [1.2891210250935146]
In Astronomy, a huge amount of image data is generated daily by photometric surveys.
We propose a technique to leverage unlabeled astronomical images to pre-train deep convolutional neural networks.
arXiv Detail & Related papers (2020-04-23T17:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.