論文の概要: Extrapolative Controlled Sequence Generation via Iterative Refinement
- arxiv url: http://arxiv.org/abs/2303.04562v3
- Date: Wed, 7 Jun 2023 15:34:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 19:05:55.885279
- Title: Extrapolative Controlled Sequence Generation via Iterative Refinement
- Title(参考訳): 反復精製による外挿制御シーケンス生成
- Authors: Vishakh Padmakumar, Richard Yuanzhe Pang, He He, Ankur P. Parikh
- Abstract要約: 本研究では,外挿制御生成の問題,すなわち,トレーニングで見られる範囲を超えて属性値を持つシーケンスを生成する問題について検討する。
本研究では,反復的制御外挿法 (ICE) を提案する。
1つの自然言語タスク(感覚分析)と2つのタンパク質工学タスク(ACE2安定性とAAV適合性)の結果、ICEは単純さにもかかわらず最先端のアプローチをかなり上回っている。
- 参考スコア(独自算出の注目度): 22.42501277690634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of extrapolative controlled generation, i.e., generating
sequences with attribute values beyond the range seen in training. This task is
of significant importance in automated design, especially drug discovery, where
the goal is to design novel proteins that are \textit{better} (e.g., more
stable) than existing sequences. Thus, by definition, the target sequences and
their attribute values are out of the training distribution, posing challenges
to existing methods that aim to directly generate the target sequence. Instead,
in this work, we propose Iterative Controlled Extrapolation (ICE) which
iteratively makes local edits to a sequence to enable extrapolation. We train
the model on synthetically generated sequence pairs that demonstrate small
improvement in the attribute value. Results on one natural language task
(sentiment analysis) and two protein engineering tasks (ACE2 stability and AAV
fitness) show that ICE considerably outperforms state-of-the-art approaches
despite its simplicity. Our code and models are available at:
https://github.com/vishakhpk/iter-extrapolation.
- Abstract(参考訳): 本研究では,外挿制御生成の問題,すなわち,トレーニングで見られる範囲を超えて属性値を持つシーケンスを生成することを検討する。
この課題は自動設計、特に薬物発見において重要な意味を持ち、その目標は既存の配列よりも新しいタンパク質(例えば、より安定な)を設計することである。
したがって、定義上、ターゲットシーケンスとその属性値はトレーニング分布外であり、ターゲットシーケンスを直接生成することを目的とした既存のメソッドに挑戦する。
そこで本研究では,逐次外挿を可能にするために局所的な編集を反復的に行う反復制御外挿(ice)を提案する。
我々は、属性値の小さな改善を示す合成生成シーケンスペアでモデルを訓練する。
1つの自然言語タスク(感覚分析)と2つのタンパク質工学タスク(ACE2安定性とAAV適合性)の結果、ICEは単純さにもかかわらず最先端のアプローチをかなり上回っている。
私たちのコードとモデルは、https://github.com/vishakhpk/iter-extrapolationで利用可能です。
関連論文リスト
- Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - SequenceMatch: Imitation Learning for Autoregressive Sequence Modelling with Backtracking [60.109453252858806]
MLE(Maxum-likelihood)の目的は、高品質なシーケンスを自動回帰的に生成する下流のユースケースと一致しない。
我々は、模倣学習(IL)問題としてシーケンス生成を定式化する。
これにより、自己回帰モデルによって生成されるシーケンスの分布とデータセットからのシーケンスとの差異を最小化できる。
得られた手法であるSequenceMatchは、敵の訓練やアーキテクチャの変更なしに実装できる。
論文 参考訳(メタデータ) (2023-06-08T17:59:58Z) - Enhancing Few-shot NER with Prompt Ordering based Data Augmentation [59.69108119752584]
本稿では,PODA(Prompt Ordering Based Data Augmentation)手法を提案する。
3つのパブリックNERデータセットの実験結果とさらなる分析により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-19T16:25:43Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
最近のデータセットは、標準的なシーケンス・ツー・シーケンスモデルにおける体系的な一般化能力の欠如を露呈している。
本稿では,セq2seqモデルの振る舞いを分析し,相互排他バイアスの欠如と全例を記憶する傾向の2つの要因を同定する。
広範に使用されている2つの構成性データセット上で、標準的なシーケンス・ツー・シーケンスモデルを用いて、経験的改善を示す。
論文 参考訳(メタデータ) (2022-11-28T17:36:41Z) - Don't Take It Literally: An Edit-Invariant Sequence Loss for Text
Generation [109.46348908829697]
生成したn-gramのすべてのn-gramとの一致損失を計算した新しい編集不変シーケンス損失(EISL)を提案する。
ノイズの多いターゲットシーケンスを持つ機械翻訳,教師なしテキストスタイル転送,非自己回帰型機械翻訳の3つのタスクについて実験を行った。
論文 参考訳(メタデータ) (2021-06-29T03:59:21Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z) - Conditional Hybrid GAN for Sequence Generation [56.67961004064029]
本稿では,この問題を解決するための条件付きハイブリッドGAN(C-Hybrid-GAN)を提案する。
我々はGumbel-Softmax法を利用して離散値列の分布を近似する。
提案したC-Hybrid-GANは、文脈条件付き離散値シーケンス生成において既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-09-18T03:52:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。