Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration
- URL: http://arxiv.org/abs/2303.04778v2
- Date: Wed, 24 Jul 2024 04:10:16 GMT
- Title: Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration
- Authors: Zhongyi Jiang, Min Zhu, Lu Lu,
- Abstract summary: Multiphase flow in porous media is essential to understand CO$$ migration and pressure fields in the subsurface associated with GCS.
Here, we develop a Fourier-enhanced multiple-input neural operator (Fourier-MIONet) to learn the solution operator of the problem of multiphase flow in porous media.
Compared to the enhanced FNO (U-FNO), the proposed Fourier-MIONet has 90% fewer unknown parameters, and it can be trained in significantly less time.
- Score: 3.3058870667947646
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Geologic carbon sequestration (GCS) is a safety-critical technology that aims to reduce the amount of carbon dioxide in the atmosphere, which also places high demands on reliability. Multiphase flow in porous media is essential to understand CO$_2$ migration and pressure fields in the subsurface associated with GCS. However, numerical simulation for such problems in 4D is computationally challenging and expensive, due to the multiphysics and multiscale nature of the highly nonlinear governing partial differential equations (PDEs). It prevents us from considering multiple subsurface scenarios and conducting real-time optimization. Here, we develop a Fourier-enhanced multiple-input neural operator (Fourier-MIONet) to learn the solution operator of the problem of multiphase flow in porous media. Fourier-MIONet utilizes the recently developed framework of the multiple-input deep neural operators (MIONet) and incorporates the Fourier neural operator (FNO) in the network architecture. Once Fourier-MIONet is trained, it can predict the evolution of saturation and pressure of the multiphase flow under various reservoir conditions, such as permeability and porosity heterogeneity, anisotropy, injection configurations, and multiphase flow properties. Compared to the enhanced FNO (U-FNO), the proposed Fourier-MIONet has 90% fewer unknown parameters, and it can be trained in significantly less time (about 3.5 times faster) with much lower CPU memory ($<$ 15%) and GPU memory ($<$ 35%) requirements, to achieve similar prediction accuracy. In addition to the lower computational cost, Fourier-MIONet can be trained with only 6 snapshots of time to predict the PDE solutions for 30 years. The excellent generalizability of Fourier-MIONet is enabled by its adherence to the physical principle that the solution to a PDE is continuous over time.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Efficient and generalizable nested Fourier-DeepONet for three-dimensional geological carbon sequestration [5.77922305904338]
Surrogate modeling with data-driven machine learning has become a promising alternative to accelerate physics-based simulations.
We have developed a nested Fourier-DeepONet by combining the expressiveness of the FNO with the modularity of a deep operator network (DeepONet)
This new framework is twice as efficient as a nested FNO for training and has at least 80% lower GPU memory requirement.
arXiv Detail & Related papers (2024-09-25T02:58:45Z) - Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
We propose U-Shaped Adaptive Fourier Neural Operators (U-AFNO), a machine learning (ML) model inspired by recent advances in neural operator learning.
We use U-AFNOs to learn the dynamics mapping the field at a current time step into a later time step.
Our model reproduces the key micro-structure statistics and QoIs with a level of accuracy on-par with the high-fidelity numerical solver.
arXiv Detail & Related papers (2024-06-24T20:13:23Z) - Solving High Frequency and Multi-Scale PDEs with Gaussian Processes [18.190228010565367]
PINNs often struggle to solve high-frequency and multi-scale PDEs.
We resort to the Gaussian process (GP) framework to solve this problem.
We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability.
arXiv Detail & Related papers (2023-11-08T05:26:58Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator [0.0]
DeepDeepONet has emerged as a powerful tool for accelerating rendering fluxDEs.
We use Physics-In DeepONets (PI-DeepONets) to achieve this mapping without any input paired-output observations.
arXiv Detail & Related papers (2023-07-03T21:10:30Z) - Fourier Continuation for Exact Derivative Computation in
Physics-Informed Neural Operators [53.087564562565774]
PINO is a machine learning architecture that has shown promising empirical results for learning partial differential equations.
We present an architecture that leverages Fourier continuation (FC) to apply the exact gradient method to PINO for nonperiodic problems.
arXiv Detail & Related papers (2022-11-29T06:37:54Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Factorized Fourier Neural Operators [77.47313102926017]
The Factorized Fourier Neural Operator (F-FNO) is a learning-based method for simulating partial differential equations.
We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver.
arXiv Detail & Related papers (2021-11-27T03:34:13Z) - U-FNO -- an enhanced Fourier neural operator based-deep learning model
for multiphase flow [43.572675744374415]
We present U-FNO, an enhanced Fourier neural operator for solving the multiphase flow problem.
We show that the U-FNO architecture has the advantages of both traditional CNN and original FNO, providing significantly more accurate and efficient performance.
The trained U-FNO provides gas saturation and pressure buildup predictions with a 10,000 times speedup compared to traditional numerical simulators.
arXiv Detail & Related papers (2021-09-03T17:52:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.