Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator
- URL: http://arxiv.org/abs/2307.01354v1
- Date: Mon, 3 Jul 2023 21:10:30 GMT
- Title: Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator
- Authors: Waleed Diab, Omar Chaabi, Shayma Alkobaisi, Abeeb Awotunde, Mohammed
Al Kobaisi
- Abstract summary: DeepDeepONet has emerged as a powerful tool for accelerating rendering fluxDEs.
We use Physics-In DeepONets (PI-DeepONets) to achieve this mapping without any input paired-output observations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional numerical schemes for simulating fluid flow and transport in
porous media can be computationally expensive. Advances in machine learning for
scientific computing have the potential to help speed up the simulation time in
many scientific and engineering fields. DeepONet has recently emerged as a
powerful tool for accelerating the solution of partial differential equations
(PDEs) by learning operators (mapping between function spaces) of PDEs. In this
work, we learn the mapping between the space of flux functions of the
Buckley-Leverett PDE and the space of solutions (saturations). We use
Physics-Informed DeepONets (PI-DeepONets) to achieve this mapping without any
paired input-output observations, except for a set of given initial or boundary
conditions; ergo, eliminating the expensive data generation process. By
leveraging the underlying physical laws via soft penalty constraints during
model training, in a manner similar to Physics-Informed Neural Networks
(PINNs), and a unique deep neural network architecture, the proposed
PI-DeepONet model can predict the solution accurately given any type of flux
function (concave, convex, or non-convex) while achieving up to four orders of
magnitude improvements in speed over traditional numerical solvers. Moreover,
the trained PI-DeepONet model demonstrates excellent generalization qualities,
rendering it a promising tool for accelerating the solution of transport
problems in porous media.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
We introduce several methods to apply latent diffusion models to physics simulation.
We show that the proposed approach is competitive with current neural PDE solvers in both accuracy and efficiency.
By introducing a scalable, accurate, and usable physics simulator, we hope to bring neural PDE solvers closer to practical use.
arXiv Detail & Related papers (2024-10-02T01:09:47Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
Hermite-Spline CNNs [4.560331122656578]
Partial Differential Equations (PDEs) are notoriously difficult to solve.
In this paper, we propose to approach the solution of PDEs based on a novel technique that combines the advantages of two recently emerging machine learning based approaches.
arXiv Detail & Related papers (2021-09-15T08:10:23Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
arXiv Detail & Related papers (2021-04-30T02:14:00Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.