Gauges and Accelerated Optimization over Smooth and/or Strongly Convex Sets
- URL: http://arxiv.org/abs/2303.05037v3
- Date: Sat, 20 Jul 2024 22:09:10 GMT
- Title: Gauges and Accelerated Optimization over Smooth and/or Strongly Convex Sets
- Authors: Ning Liu, Benjamin Grimmer,
- Abstract summary: We consider feasibility and constrained optimization problems defined over smooth and/or strongly convex sets.
We propose new scalable, projection-free, accelerated first-order methods in these settings.
- Score: 4.5344287283782405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider feasibility and constrained optimization problems defined over smooth and/or strongly convex sets. These notions mirror their popular function counterparts but are much less explored in the first-order optimization literature. We propose new scalable, projection-free, accelerated first-order methods in these settings. Our methods avoid linear optimization or projection oracles, only using cheap one-dimensional linesearches and normal vector computations. Despite this, we derive optimal accelerated convergence guarantees of $O(1/T)$ for strongly convex problems, $O(1/T^2)$ for smooth problems, and accelerated linear convergence given both. Our algorithms and analysis are based on novel characterizations of the Minkowski gauge of smooth and/or strongly convex sets, which may be of independent interest: although the gauge is neither smooth nor strongly convex, we show the gauge squared inherits any structure present in the set.
Related papers
- Stochastic Momentum Methods for Non-smooth Non-Convex Finite-Sum Coupled Compositional Optimization [64.99236464953032]
We propose a new state-of-the-art complexity of $O(/epsilon)$ for finding an (nearly) $'level KKT solution.<n>By applying our hinge-of-the-art complexity of $O(/epsilon)$ for finding an (nearly) $'level KKT solution, we achieve a new state-of-the-art complexity of $O(/epsilon)$ for finding an (nearly) $'level KKT solution.
arXiv Detail & Related papers (2025-06-03T06:31:59Z) - Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.
In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem.
We measure the performance of our method in terms of suboptimality and infeasibility errors.
arXiv Detail & Related papers (2024-02-12T22:34:53Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
We study the complexity of producing neither smooth nor convex points of Lipschitz objectives which are possibly using only zero-order evaluations.
Our analysis is based on a simple yet powerful.
Goldstein-subdifferential set, which allows recent advancements in.
nonsmooth non optimization.
arXiv Detail & Related papers (2023-07-10T11:56:04Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Faster Accelerated First-order Methods for Convex Optimization with Strongly Convex Function Constraints [3.1044138971639734]
We introduce faster accelerated primal-dual algorithms for minimizing a convex function subject to strongly convex function constraints.<n>We show the superior performance our methods in sparsity-inducing optimization, notably Google's personalized PageRank problem.
arXiv Detail & Related papers (2022-12-21T16:04:53Z) - Fast Algorithm for Constrained Linear Inverse Problems [5.0490573482829335]
We consider the constrained Linear Inverse Problem (LIP), where a certain atomic norm is minimized subject to a quadratic constraint.
We propose two equivalent reformulations of the constrained LIP with improved convex regularity.
We demonstrate the performance of FLIPS on the classical problems of Binary Selection, Compressed Sensing, and Image Denoising.
arXiv Detail & Related papers (2022-12-02T10:12:14Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - Oracle Complexity in Nonsmooth Nonconvex Optimization [49.088972349825085]
It is well-known that given a smooth, bounded-from-below $$stationary points, Oracle-based methods can find smooth approximation of smoothness.
In this paper, we prove an inherent trade-off between optimization and smoothing dimension.
arXiv Detail & Related papers (2021-04-14T10:42:45Z) - Adaptive extra-gradient methods for min-max optimization and games [35.02879452114223]
We present a new family of minmax optimization algorithms that automatically exploit the geometry of the gradient data observed at earlier iterations.
Thanks to this adaptation mechanism, the proposed method automatically detects whether the problem is smooth or not.
It converges to an $varepsilon$-optimal solution within $mathcalO (1/varepsilon)$ iterations in smooth problems, and within $mathcalO (1/varepsilon)$ iterations in non-smooth ones.
arXiv Detail & Related papers (2020-10-22T22:54:54Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.