論文の概要: Semi-Federated Learning for Collaborative Intelligence in Massive IoT
Networks
- arxiv url: http://arxiv.org/abs/2303.05048v1
- Date: Thu, 9 Mar 2023 05:53:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 16:03:18.970913
- Title: Semi-Federated Learning for Collaborative Intelligence in Massive IoT
Networks
- Title(参考訳): 大規模IoTネットワークにおけるコラボレーティブインテリジェンスのためのセミフェデレーション学習
- Authors: Wanli Ni, Jingheng Zheng, and Hui Tian
- Abstract要約: 知的IoTの実現のための潜在的なソリューションを提供するために,セミフェデレーション学習(SemiFL)フレームワークを提案する。
我々のフレームワークは、コンピューティングに制限されたセンサーが存在する場合でも、IoTデバイスの数の観点から高いスケーラビリティを示している。
- 参考スコア(独自算出の注目度): 5.267288702335319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implementing existing federated learning in massive Internet of Things (IoT)
networks faces critical challenges such as imbalanced and statistically
heterogeneous data and device diversity. To this end, we propose a
semi-federated learning (SemiFL) framework to provide a potential solution for
the realization of intelligent IoT. By seamlessly integrating the centralized
and federated paradigms, our SemiFL framework shows high scalability in terms
of the number of IoT devices even in the presence of computing-limited sensors.
Furthermore, compared to traditional learning approaches, the proposed SemiFL
can make better use of distributed data and computing resources, due to the
collaborative model training between the edge server and local devices.
Simulation results show the effectiveness of our SemiFL framework for massive
IoT networks. The code can be found at https://github.com/niwanli/SemiFL_IoT.
- Abstract(参考訳): 大規模モノのインターネット(IoT)ネットワークにおける既存のフェデレーション学習の実装は、不均衡や統計的に異質なデータやデバイスの多様性といった重要な課題に直面している。
この目的のために,知的IoTの実現のための潜在的なソリューションを提供するためのセミフェデレーション学習(SemiFL)フレームワークを提案する。
集中型とフェデレートされたパラダイムをシームレスに統合することにより、SemiFLフレームワークは、コンピューティング限定のセンサーが存在する場合でも、IoTデバイスの数の観点から高いスケーラビリティを示します。
さらに,従来の学習手法と比較して,エッジサーバとローカルデバイス間の協調モデルトレーニングにより,semiflは分散データと計算リソースをより活用することができる。
シミュレーション結果は,大規模iotネットワークにおけるsemiflフレームワークの有効性を示す。
コードはhttps://github.com/niwanli/semifl_iotにある。
関連論文リスト
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoTエコシステムは、モーション、サーマル、ジオロケーション、イメージング、ディープ、センサー、オーディオといった、現実世界のモダリティの豊富なソースを提供する。
機械学習は、IoTデータを大規模に自動的に処理する豊富な機会を提供する。
IoTエコシステムに適した,オープンソースの大規模マルチセンサ言語モデルであるIoT-LMを紹介します。
論文 参考訳(メタデータ) (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
本稿では,エッジサーバの高性能機能を活用した,エッジ支援型U-Shaped Split Federated Learning (EUSFL) フレームワークを提案する。
このフレームワークでは、フェデレートラーニング(FL)を活用し、データ保持者がデータを共有せずに協調的にモデルをトレーニングできるようにします。
また,データの特徴やラベルが復元攻撃に対して確実に耐えられるように,ラベルDPと呼ばれる新しいノイズ機構を提案する。
論文 参考訳(メタデータ) (2023-11-08T05:14:41Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Federated Learning in Mobile Edge Computing: An Edge-Learning
Perspective for Beyond 5G [24.275726025778482]
本稿では,エッジコンピューティングを利用した新しいフェデレーション学習フレームワークを提案する。
IoTデバイスとエッジサーバ間の通信制約を考慮する。
さまざまなIoTデバイスは、エッジサーバで生成されたグローバルモデルの正確性にさまざまな影響を与える、さまざまなトレーニングデータセットを持っています。
論文 参考訳(メタデータ) (2020-07-15T22:58:47Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
分散システムにおける機械学習モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
提案するFLアルゴリズムは,ネットワーク内のデータ操作を行うデバイスとの協調を利用して,完全に分散された(あるいはサーバレス)学習手法を提案する。
このアプローチは、分散接続とコンピューティングを特徴とするネットワークを超えて、5G 内で FL を統合するための基盤となる。
論文 参考訳(メタデータ) (2019-12-27T15:16:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。