論文の概要: Wireless Communications for Collaborative Federated Learning
- arxiv url: http://arxiv.org/abs/2006.02499v2
- Date: Sat, 29 Aug 2020 21:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 18:48:07.131816
- Title: Wireless Communications for Collaborative Federated Learning
- Title(参考訳): 協調学習のための無線通信
- Authors: Mingzhe Chen, H. Vincent Poor, Walid Saad, and Shuguang Cui
- Abstract要約: IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
- 参考スコア(独自算出の注目度): 160.82696473996566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet of Things (IoT) services will use machine learning tools to
efficiently analyze various types of data collected by IoT devices for
inference, autonomy, and control purposes. However, due to resource constraints
and privacy challenges, edge IoT devices may not be able to transmit their
collected data to a central controller for training machine learning models. To
overcome this challenge, federated learning (FL) has been proposed as a means
for enabling edge devices to train a shared machine learning model without data
exchanges thus reducing communication overhead and preserving data privacy.
However, Google's seminal FL algorithm requires all devices to be directly
connected with a central controller, which significantly limits its application
scenarios. In this context, this paper introduces a novel FL framework, called
collaborative FL (CFL), which enables edge devices to implement FL with less
reliance on a central controller. The fundamentals of this framework are
developed and then, a number of communication techniques are proposed so as to
improve the performance of CFL. To this end, an overview of centralized
learning, Google's seminal FL, and CFL is first presented. For each type of
learning, the basic architecture as well as its advantages, drawbacks, and
usage conditions are introduced. Then, three CFL performance metrics are
presented and a suite of communication techniques ranging from network
formation, device scheduling, mobility management, and coding is introduced to
optimize the performance of CFL. For each technique, future research
opportunities are also discussed. In a nutshell, this article will showcase how
the proposed CFL framework can be effectively implemented at the edge of
large-scale wireless systems such as the Internet of Things.
- Abstract(参考訳): IoT(Internet of Things)サービスでは、機械学習ツールを使用して、推論、自律性、制御目的でIoTデバイスが収集したさまざまなタイプのデータを効率的に分析する。
しかしながら、リソースの制約とプライバシの課題のため、エッジIoTデバイスは、収集したデータを中央のコントローラに送信してマシンラーニングモデルをトレーニングすることはできない。
この課題を克服するために、エッジデバイスがデータ交換なしで共有機械学習モデルをトレーニングできるようにする手段として、連合学習(federated learning:fl)が提案されている。
しかしながら,GoogleのセミナルFLアルゴリズムでは,すべてのデバイスを中央コントローラに直接接続する必要があるため,アプリケーションのシナリオが大幅に制限される。
本稿では、エッジデバイスが中央制御器に頼らずにFLを実装することを可能にする、コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
このフレームワークの基本が開発され、cflの性能を向上させるために多くの通信技術が提案されている。
この目的のために、集中学習の概要、GoogleのセミナルFL、CFLが最初に紹介される。
学習の種類ごとに、基本的なアーキテクチャと、その利点、欠点、利用状況が紹介される。
次に,3つのCFL性能指標を提示し,ネットワーク形成,デバイススケジューリング,モビリティ管理,コーディングといった一連の通信手法を導入して,CFLの性能を最適化する。
各技術について,今後の研究機会についても論じる。
本稿では,モノのインターネットなどの大規模無線システムのエッジにおいて,提案したCFLフレームワークを効果的に実装する方法を紹介する。
関連論文リスト
- Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
本稿では,プロトコルスタックのすべてのレベルにわたってフェデレートラーニングを実装することの付加価値について検討する。
それは重要なFLアプリケーションを示し、ホットトピックに対処し、将来の研究と開発のための貴重な洞察と明示的なガイダンスを提供します。
我々の結論は、FLと将来の6Gの相乗効果を活用しつつ、FLがワイヤレス産業に革命をもたらす可能性を浮き彫りにすることを目的としています。
論文 参考訳(メタデータ) (2023-12-07T20:39:57Z) - Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity [2.6849848612544]
Federated Learning(FL)は、エッジコンピューティングシナリオで学習タスクを実行するためのフレームワークである。
本稿では,コミュニケーション効率のよい分散フェデレート学習(DFL)アルゴリズムを提案する。
我々のソリューションは、デバイスが直接隣人とのみ通信し、正確なモデルを訓練することを可能にする。
論文 参考訳(メタデータ) (2023-12-07T18:24:19Z) - Revolutionizing Wireless Networks with Federated Learning: A
Comprehensive Review [0.0]
本稿では,無線通信における機械学習の重要性について論じる。
これは、フェデレートラーニング(FL)を、将来のモバイルネットワーク、特に6Gなどにおいて重要な役割を果たす新しいアプローチとして強調している。
論文 参考訳(メタデータ) (2023-08-01T22:32:10Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Confederated Learning: Federated Learning with Decentralized Edge
Servers [42.766372620288585]
Federated Learning(FL)は、中央サーバでデータを集約することなく、モデルトレーニングを達成可能な、新興の機械学習パラダイムである。
本稿では,各サーバが個々のデバイスに接続されたConFederated Learning(CFL)フレームワークを提案する。
提案アルゴリズムはランダムなスケジューリングポリシを用いて,各イテレーションで各サーバにアクセスするデバイスサブセットをランダムに選択する。
論文 参考訳(メタデータ) (2022-05-30T07:56:58Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Federated Learning for Physical Layer Design [38.46522285374866]
Federated Learning (FL) は最近,分散学習スキームとして提案されている。
FLは集中型学習(CL)よりもコミュニケーション効率が高くプライバシーを保ちます。
本稿では,物理層設計問題に対するFLベーストレーニングの最近の進歩について論じる。
論文 参考訳(メタデータ) (2021-02-23T16:22:53Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
我々は最近実装されたフェデレートラーニングの現実的な応用をいくつか紹介する。
大規模ネットワークでは、様々な計算資源を持つクライアントが存在するかもしれない。
FL領域における資源制約装置の今後の方向性を強調した。
論文 参考訳(メタデータ) (2020-02-25T01:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。