Blind2Sound: Self-Supervised Image Denoising without Residual Noise
- URL: http://arxiv.org/abs/2303.05183v1
- Date: Thu, 9 Mar 2023 11:21:59 GMT
- Title: Blind2Sound: Self-Supervised Image Denoising without Residual Noise
- Authors: Zejin Wang, Jiazheng Liu, Jiazheng Liu, Hua Han
- Abstract summary: Self-supervised blind denoising for Poisson-Gaussian noise remains a challenging task.
We propose Blind2Sound, a simple yet effective approach to overcome residual noise in denoised images.
- Score: 5.192255321684027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised blind denoising for Poisson-Gaussian noise remains a
challenging task. Pseudo-supervised pairs constructed from single noisy images
re-corrupt the signal and degrade the performance. The visible blindspots solve
the information loss in masked inputs. However, without explicitly noise
sensing, mean square error as an objective function cannot adjust denoising
intensities for dynamic noise levels, leading to noticeable residual noise. In
this paper, we propose Blind2Sound, a simple yet effective approach to overcome
residual noise in denoised images. The proposed adaptive re-visible loss senses
noise levels and performs personalized denoising without noise residues while
retaining the signal lossless. The theoretical analysis of intermediate medium
gradients guarantees stable training, while the Cramer Gaussian loss acts as a
regularization to facilitate the accurate perception of noise levels and
improve the performance of the denoiser. Experiments on synthetic and
real-world datasets show the superior performance of our method, especially for
single-channel images.
Related papers
- Back to Basics: Fast Denoising Iterative Algorithm [0.0]
We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction.
We examine three study cases: natural image denoising in the presence of additive white Gaussian noise, Poisson-distributed image denoising, and speckle suppression in optical coherence tomography ( OCT)
Experimental results demonstrate that the proposed approach can effectively improve image quality, in challenging noise settings.
arXiv Detail & Related papers (2023-11-11T18:32:06Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
We propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion.
Our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way.
arXiv Detail & Related papers (2022-12-14T08:19:30Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Adaptive noise imitation for image denoising [58.21456707617451]
We develop a new textbfadaptive noise imitation (ADANI) algorithm that can synthesize noisy data from naturally noisy images.
To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation.
Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner.
arXiv Detail & Related papers (2020-11-30T02:49:36Z) - Enhancing and Learning Denoiser without Clean Reference [23.11994688706024]
We propose a novel deep image-denoising method by regarding the noise reduction task as a special case of the noise transference task.
The results on real-world denoising benchmarks demonstrate that our proposed method achieves promising performance on removing realistic noises.
arXiv Detail & Related papers (2020-09-09T13:15:31Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises.
Previous image-based method leads to noise overfitting if directly applied to video denoisers.
We propose a general framework for video denoising networks that successfully addresses these challenges.
arXiv Detail & Related papers (2020-07-07T07:19:48Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
This paper proposes a gradual denoising strategy that iteratively detects the dominating noise in an image, and removes it using a tailored denoiser.
The method provides an insight on the nature of the encountered noise, and it makes it possible to extend an existing denoiser with new noise nature.
arXiv Detail & Related papers (2020-02-18T11:09:03Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.