Intriguing Property and Counterfactual Explanation of GAN for Remote Sensing Image Generation
- URL: http://arxiv.org/abs/2303.05240v3
- Date: Tue, 14 May 2024 13:46:16 GMT
- Title: Intriguing Property and Counterfactual Explanation of GAN for Remote Sensing Image Generation
- Authors: Xingzhe Su, Wenwen Qiang, Jie Hu, Fengge Wu, Changwen Zheng, Fuchun Sun,
- Abstract summary: Generative adversarial networks (GANs) have achieved remarkable progress in the natural image field.
GAN model is more sensitive to the size of training data for RS image generation than for natural image generation.
We propose two innovative adjustment schemes, namely Uniformity Regularization (UR) and Entropy Regularization (ER), to increase the information learned by the GAN model.
- Score: 25.96740500337747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) have achieved remarkable progress in the natural image field. However, when applying GANs in the remote sensing (RS) image generation task, an extraordinary phenomenon is observed: the GAN model is more sensitive to the size of training data for RS image generation than for natural image generation. In other words, the generation quality of RS images will change significantly with the number of training categories or samples per category. In this paper, we first analyze this phenomenon from two kinds of toy experiments and conclude that the amount of feature information contained in the GAN model decreases with reduced training data. Then we establish a structural causal model (SCM) of the data generation process and interpret the generated data as the counterfactuals. Based on this SCM, we theoretically prove that the quality of generated images is positively correlated with the amount of feature information. This provides insights for enriching the feature information learned by the GAN model during training. Consequently, we propose two innovative adjustment schemes, namely Uniformity Regularization (UR) and Entropy Regularization (ER), to increase the information learned by the GAN model at the distributional and sample levels, respectively. We theoretically and empirically demonstrate the effectiveness and versatility of our methods. Extensive experiments on three RS datasets and two natural datasets show that our methods outperform the well-established models on RS image generation tasks. The source code is available at https://github.com/rootSue/Causal-RSGAN.
Related papers
- Medical Imaging Complexity and its Effects on GAN Performance [1.776717121506676]
Medical image synthesis via generative adversarial networks (GANs) emerged as a powerful method for synthetically generating photo-realistic images.
We experimentally establish benchmarks that measure the relationship between a sample dataset size and the fidelity of the generated images.
We conduct experiments with two state-of-the-art GANs, StyleGAN 3 and SPADE-GAN, trained on multiple medical imaging datasets with variable sample sizes.
arXiv Detail & Related papers (2024-10-23T15:28:25Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - X-Transfer: A Transfer Learning-Based Framework for GAN-Generated Fake
Image Detection [33.31312811230408]
misuse of GANs for generating deceptive images, such as face replacement, raises significant security concerns.
This paper introduces a novel GAN-generated image detection algorithm called X-Transfer.
It enhances transfer learning by utilizing two neural networks that employ interleaved parallel gradient transmission.
arXiv Detail & Related papers (2023-10-07T01:23:49Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - GIU-GANs: Global Information Utilization for Generative Adversarial
Networks [3.3945834638760948]
In this paper, we propose a new GANs called Involution Generative Adversarial Networks (GIU-GANs)
GIU-GANs leverages a brand new module called the Global Information Utilization (GIU) module, which integrates Squeeze-and-Excitation Networks (SENet) and involution.
Batch Normalization(BN) inevitably ignores the representation differences among noise sampled by the generator, and thus degrades the generated image quality.
arXiv Detail & Related papers (2022-01-25T17:17:15Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
Recently proposed generative models complete training based on only one image.
We introduce a MOrphologic-structure-aware Generative Adversarial Network named MOGAN that produces random samples with diverse appearances.
Our approach focuses on internal features including the maintenance of rational structures and variation on appearance.
arXiv Detail & Related papers (2021-03-04T12:45:23Z) - Generative Zero-shot Network Quantization [41.75769117366117]
Convolutional neural networks are able to learn realistic image priors from numerous training samples in low-level image generation and restoration.
We show that, for high-level image recognition tasks, we can further reconstruct "realistic" images of each category by leveraging intrinsic Batch Normalization (BN) statistics without any training data.
arXiv Detail & Related papers (2021-01-21T04:10:04Z) - Turbulence Enrichment using Physics-informed Generative Adversarial
Networks [0.0]
We develop methods for generative enrichment of turbulence.
We incorporate a physics-informed learning approach by a modification to the loss function.
We show that using the physics-informed learning can also significantly improve the model's ability in generating data that satisfies the physical governing equations.
arXiv Detail & Related papers (2020-03-04T06:14:11Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.