Medical Imaging Complexity and its Effects on GAN Performance
- URL: http://arxiv.org/abs/2410.17959v1
- Date: Wed, 23 Oct 2024 15:28:25 GMT
- Title: Medical Imaging Complexity and its Effects on GAN Performance
- Authors: William Cagas, Chan Ko, Blake Hsiao, Shryuk Grandhi, Rishi Bhattacharya, Kevin Zhu, Michael Lam,
- Abstract summary: Medical image synthesis via generative adversarial networks (GANs) emerged as a powerful method for synthetically generating photo-realistic images.
We experimentally establish benchmarks that measure the relationship between a sample dataset size and the fidelity of the generated images.
We conduct experiments with two state-of-the-art GANs, StyleGAN 3 and SPADE-GAN, trained on multiple medical imaging datasets with variable sample sizes.
- Score: 1.776717121506676
- License:
- Abstract: The proliferation of machine learning models in diverse clinical applications has led to a growing need for high-fidelity, medical image training data. Such data is often scarce due to cost constraints and privacy concerns. Alleviating this burden, medical image synthesis via generative adversarial networks (GANs) emerged as a powerful method for synthetically generating photo-realistic images based on existing sets of real medical images. However, the exact image set size required to efficiently train such a GAN is unclear. In this work, we experimentally establish benchmarks that measure the relationship between a sample dataset size and the fidelity of the generated images, given the dataset's distribution of image complexities. We analyze statistical metrics based on delentropy, an image complexity measure rooted in Shannon's entropy in information theory. For our pipeline, we conduct experiments with two state-of-the-art GANs, StyleGAN 3 and SPADE-GAN, trained on multiple medical imaging datasets with variable sample sizes. Across both GANs, general performance improved with increasing training set size but suffered with increasing complexity.
Related papers
- Enhancing Medical Imaging with GANs Synthesizing Realistic Images from Limited Data [3.7304751266416747]
We introduce an innovative method for synthesizing medical images using generative adversarial networks (GANs)
Our proposed GANs method demonstrates the capability to produce realistic synthetic images even when trained on a limited quantity of real medical image data.
arXiv Detail & Related papers (2024-05-22T23:32:24Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Intriguing Property and Counterfactual Explanation of GAN for Remote Sensing Image Generation [25.96740500337747]
Generative adversarial networks (GANs) have achieved remarkable progress in the natural image field.
GAN model is more sensitive to the size of training data for RS image generation than for natural image generation.
We propose two innovative adjustment schemes, namely Uniformity Regularization (UR) and Entropy Regularization (ER), to increase the information learned by the GAN model.
arXiv Detail & Related papers (2023-03-09T13:22:50Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - This Intestine Does Not Exist: Multiscale Residual Variational
Autoencoder for Realistic Wireless Capsule Endoscopy Image Generation [7.430724826764835]
A novel Variational Autoencoder architecture is proposed, namely "This Intestine Does not Exist" (TIDE)
The proposed architecture comprises multiscale feature extraction convolutional blocks and residual connections, which enable the generation of high-quality and diverse datasets.
Contrary to the current approaches, which are oriented towards the augmentation of the available datasets, this study demonstrates that using TIDE, real WCE datasets can be fully substituted.
arXiv Detail & Related papers (2023-02-04T11:49:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
Generative Adversarial Networks (GANs) can generate realistic but novel samples, and thus effectively cover the real image distribution.
This thesis contains four GAN projects aiming to present such novel applications' clinical relevance in collaboration with physicians.
arXiv Detail & Related papers (2021-06-03T15:08:14Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.