論文の概要: ChatGPT is on the Horizon: Could a Large Language Model be Suitable for
Intelligent Traffic Safety Research and Applications?
- arxiv url: http://arxiv.org/abs/2303.05382v3
- Date: Tue, 5 Sep 2023 18:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 19:24:56.137048
- Title: ChatGPT is on the Horizon: Could a Large Language Model be Suitable for
Intelligent Traffic Safety Research and Applications?
- Title(参考訳): ChatGPTは地平線上にある: 大規模言語モデルは知的交通安全研究や応用に適しているのか?
- Authors: Ou Zheng, Mohamed Abdel-Aty, Dongdong Wang, Zijin Wang, Shengxuan Ding
- Abstract要約: ChatGPTは人工知能の新しい時代に乗り出し、インテリジェントな交通安全システムへのアプローチに革命をもたらすだろう。
本稿では,大規模言語モデル(LLM)の開発に関する簡単な紹介から始める。
- 参考スコア(独自算出の注目度): 2.5037019262278792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ChatGPT embarks on a new era of artificial intelligence and will
revolutionize the way we approach intelligent traffic safety systems. This
paper begins with a brief introduction about the development of large language
models (LLMs). Next, we exemplify using ChatGPT to address key traffic safety
issues. Furthermore, we discuss the controversies surrounding LLMs, raise
critical questions for their deployment, and provide our solutions. Moreover,
we propose an idea of multi-modality representation learning for smarter
traffic safety decision-making and open more questions for application
improvement. We believe that LLM will both shape and potentially facilitate
components of traffic safety research.
- Abstract(参考訳): ChatGPTは人工知能の新しい時代に乗り出し、インテリジェントな交通安全システムへのアプローチに革命をもたらすだろう。
本稿では,大規模言語モデル(LLM)の開発について概説する。
次に、重要な交通安全問題に対処するためにChatGPTを例示する。
さらに,llmを取り巻く議論を議論し,デプロイに関する重要な疑問を提起し,ソリューションを提供する。
さらに,よりスマートな交通安全意思決定のためのマルチモダリティ表現学習のアイデアを提案し,アプリケーション改善のためのさらなる疑問を提起する。
LLMは交通安全研究の構成要素を形作り、潜在的に促進するものと信じている。
関連論文リスト
- Multimodal Situational Safety [73.63981779844916]
マルチモーダル・シチュエーション・セーフティ(Multimodal situational Safety)と呼ばれる新しい安全課題の評価と分析を行う。
MLLMが言語やアクションを通じても安全に応答するためには、言語クエリが対応する視覚的コンテキスト内での安全性への影響を評価する必要があることが多い。
我々は,現在のMLLMの状況安全性能を評価するためのマルチモーダル状況安全ベンチマーク(MSSBench)を開発した。
論文 参考訳(メタデータ) (2024-10-08T16:16:07Z) - A Survey on the Applications of Frontier AI, Foundation Models, and
Large Language Models to Intelligent Transportation Systems [8.017557640367938]
本稿では,知的交通システム(ITS)の領域におけるフロンティアAI,基礎モデル,大規模言語モデル(LLM)の変容的影響について検討する。
交通インテリジェンスを推進し、交通管理を最適化し、スマートシティの実現に寄与する重要な役割を強調している。
論文 参考訳(メタデータ) (2024-01-12T10:29:48Z) - Open-TI: Open Traffic Intelligence with Augmented Language Model [23.22301632003752]
Open-TIは、チューリング識別可能なトラフィックインテリジェンスを目標とする革新的なモデルである。
ゼロから徹底的な交通分析を行うことができる最初の方法である。
Open-TIは、トレーニングや交通信号制御ポリシーの適用といったタスク固有の実施を可能にする。
論文 参考訳(メタデータ) (2023-12-30T11:50:11Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - TrafficGPT: Viewing, Processing and Interacting with Traffic Foundation
Models [10.904594811905778]
TrafficGPTはChatGPTと交通基盤モデルの融合である。
大きな言語モデルとトラフィックの専門知識をシームレスに相互運用することで、TrafficGPTは、この領域でAI機能を活用するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2023-09-13T04:47:43Z) - Intelligent Traffic Monitoring with Hybrid AI [78.65479854534858]
マルチモーダルコンテキスト理解のためのニューロシンボリックアーキテクチャであるHANSを紹介する。
HANSが交通監視に関わる課題にどのように対処するかを示すとともに,幅広い推論手法と統合可能であることを示す。
論文 参考訳(メタデータ) (2022-08-31T17:47:22Z) - Machine Learning for Security in Vehicular Networks: A Comprehensive
Survey [4.010371060637208]
本稿では,車載ネットワークにおけるさまざまなセキュリティ問題に対するMLベースの手法に関する包括的調査を行う。
本稿では、車両ネットワークにおけるセキュリティ攻撃の分類を提案し、様々なセキュリティ課題と要件について議論する。
さまざまなセキュリティ課題に対処する上で、これらのMLテクニックのソリューションアプローチと動作原則を説明します。
論文 参考訳(メタデータ) (2021-05-31T15:15:03Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。