論文の概要: LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving
- arxiv url: http://arxiv.org/abs/2310.03026v2
- Date: Fri, 13 Oct 2023 16:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 16:56:37.669022
- Title: LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving
- Title(参考訳): LanguageMPC: 自律運転のための意思決定者としての大規模言語モデル
- Authors: Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen, Chenfeng Xu, Ping Luo, Shengbo
Eben Li, Masayoshi Tomizuka, Wei Zhan, Mingyu Ding
- Abstract要約: この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
- 参考スコア(独自算出の注目度): 87.1164964709168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing learning-based autonomous driving (AD) systems face challenges in
comprehending high-level information, generalizing to rare events, and
providing interpretability. To address these problems, this work employs Large
Language Models (LLMs) as a decision-making component for complex AD scenarios
that require human commonsense understanding. We devise cognitive pathways to
enable comprehensive reasoning with LLMs, and develop algorithms for
translating LLM decisions into actionable driving commands. Through this
approach, LLM decisions are seamlessly integrated with low-level controllers by
guided parameter matrix adaptation. Extensive experiments demonstrate that our
proposed method not only consistently surpasses baseline approaches in
single-vehicle tasks, but also helps handle complex driving behaviors even
multi-vehicle coordination, thanks to the commonsense reasoning capabilities of
LLMs. This paper presents an initial step toward leveraging LLMs as effective
decision-makers for intricate AD scenarios in terms of safety, efficiency,
generalizability, and interoperability. We aspire for it to serve as
inspiration for future research in this field. Project page:
https://sites.google.com/view/llm-mpc
- Abstract(参考訳): 既存の学習ベースの自動運転(ad)システムは、ハイレベルな情報の理解、レアなイベントへの一般化、解釈可能性の提供といった課題に直面している。
これらの問題に対処するため、この研究では、人間の常識的理解を必要とする複雑なADシナリオの意思決定コンポーネントとして、LLM(Large Language Models)を採用している。
我々は,LLMによる包括的推論を可能にする認知経路を考案し,LLM決定を動作可能な駆動コマンドに変換するアルゴリズムを開発した。
このアプローチを通じて、LLM決定はガイドパラメータ行列適応により低レベルコントローラとシームレスに統合される。
広汎な実験により,提案手法は単一車載タスクのベースラインアプローチを一貫して超えるだけでなく,LLMの常識的推論能力のおかげで,多車載協調さえも複雑な運転動作の処理に有効であることが示された。
本稿では, 安全性, 効率, 汎用性, 相互運用性の観点から, LLMを複雑なADシナリオに効果的に活用するための最初のステップを示す。
この分野での今後の研究のインスピレーションになることを期待しています。
プロジェクトページ: https://sites.google.com/view/llm-mpc
関連論文リスト
- Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment [15.52530518623987]
大規模言語モデル(LLM)は、自律運転システムの様々な側面を強化する可能性を秘めている。
本稿では,LLMを自動走行(LLM4AD)用に設計するための新しい概念とアプローチを紹介する。
論文 参考訳(メタデータ) (2024-10-20T04:36:19Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - Will Large Language Models be a Panacea to Autonomous Driving? [25.963195890376646]
自律運転(AD)技術の開発は、モジュール化とエンドツーエンドの2つの主要な技術的パスに従っている。
本稿では,ADシステムにおける大規模言語モデル(LLM)の適用可能性について,詳細な分析を行う。
LLMベースの人工知能(AGI)がハイレベルADを実現する鍵となるのか?
論文 参考訳(メタデータ) (2024-09-21T15:07:37Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - KoMA: Knowledge-driven Multi-agent Framework for Autonomous Driving with Large Language Models [15.951550445568605]
自律エージェントとしての大規模言語モデル(LLM)は、知識駆動的な方法で現実の課題に取り組むための新しい道筋を提供する。
我々は,マルチエージェントインタラクション,マルチステップ計画,共有メモリ,ランキングベースのリフレクションモジュールからなるKoMAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-19T12:13:08Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - Evaluation of Large Language Models for Decision Making in Autonomous
Driving [4.271294502084542]
自律走行にLarge Language Models (LLMs)を使用する一つの戦略は、周囲のオブジェクトを LLM にテキストプロンプトとして入力することである。
このような目的のためにLLMを使用する場合、空間認識や計画などの能力は不可欠である。
本研究は、自律運転の文脈におけるLLMの2つの能力について定量的に評価した。
論文 参考訳(メタデータ) (2023-12-11T12:56:40Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。