Natural Gradient Methods: Perspectives, Efficient-Scalable
Approximations, and Analysis
- URL: http://arxiv.org/abs/2303.05473v1
- Date: Mon, 6 Mar 2023 04:03:56 GMT
- Title: Natural Gradient Methods: Perspectives, Efficient-Scalable
Approximations, and Analysis
- Authors: Rajesh Shrestha
- Abstract summary: Natural Gradient Descent is a second-degree optimization method motivated by the information geometry.
It makes use of the Fisher Information Matrix instead of the Hessian which is typically used.
Being a second-order method makes it infeasible to be used directly in problems with a huge number of parameters and data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural Gradient Descent, a second-degree optimization method motivated by
the information geometry, makes use of the Fisher Information Matrix instead of
the Hessian which is typically used. However, in many cases, the Fisher
Information Matrix is equivalent to the Generalized Gauss-Newton Method, that
both approximate the Hessian. It is an appealing method to be used as an
alternative to stochastic gradient descent, potentially leading to faster
convergence. However, being a second-order method makes it infeasible to be
used directly in problems with a huge number of parameters and data. This is
evident from the community of deep learning sticking with the stochastic
gradient descent method since the beginning. In this paper, we look at the
different perspectives on the natural gradient method, study the current
developments on its efficient-scalable empirical approximations, and finally
examine their performance with extensive experiments.
Related papers
- A Historical Trajectory Assisted Optimization Method for Zeroth-Order Federated Learning [24.111048817721592]
Federated learning heavily relies on distributed gradient descent techniques.
In the situation where gradient information is not available, gradients need to be estimated from zeroth-order information.
We propose a non-isotropic sampling method to improve the gradient estimation procedure.
arXiv Detail & Related papers (2024-09-24T10:36:40Z) - Information Geometry and Beta Link for Optimizing Sparse Variational Student-t Processes [6.37512592611305]
Student-t Processes has been proposed to enhance computational efficiency and flexibility for real-world datasets using gradient descent.
Traditional gradient descent methods like Adam may not fully exploit the parameter space geometry, potentially leading to slower convergence and suboptimal performance.
We adopt natural gradient methods from information geometry for variational parameter optimization of Student-t Processes.
arXiv Detail & Related papers (2024-08-13T07:53:39Z) - An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes [17.804065824245402]
In machine learning applications, each loss function is non-negative and can be expressed as the composition of a square and its real-valued square root.
We show how to apply the Gauss-Newton method or the Levssquardt method to minimize the average of smooth but possibly non-negative functions.
arXiv Detail & Related papers (2024-07-05T08:53:06Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - One-step corrected projected stochastic gradient descent for statistical estimation [49.1574468325115]
It is based on the projected gradient descent on the log-likelihood function corrected by a single step of the Fisher scoring algorithm.
We show theoretically and by simulations that it is an interesting alternative to the usual gradient descent with averaging or the adaptative gradient descent.
arXiv Detail & Related papers (2023-06-09T13:43:07Z) - Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
Step Size [29.15132344744801]
We establish local convergence for gradient descent with adaptive step size for problems such as matrix inversion.
We show that these first order optimization methods can achieve sub-linear or linear convergence.
arXiv Detail & Related papers (2021-12-30T00:50:30Z) - Leveraging Non-uniformity in First-order Non-convex Optimization [93.6817946818977]
Non-uniform refinement of objective functions leads to emphNon-uniform Smoothness (NS) and emphNon-uniform Lojasiewicz inequality (NL)
New definitions inspire new geometry-aware first-order methods that converge to global optimality faster than the classical $Omega (1/t2)$ lower bounds.
arXiv Detail & Related papers (2021-05-13T04:23:07Z) - Two-Level K-FAC Preconditioning for Deep Learning [7.699428789159717]
In the context of deep learning, many optimization methods use gradient covariance information in order to accelerate the convergence of Gradient Descent.
In particular, starting with Adagrad, a seemingly endless line of research advocates the use of diagonal approximations of the so-called empirical Fisher matrix.
One particularly successful variant of such methods is the so-called K-FAC, which uses a Kronecker-ed block-factored preconditioner.
arXiv Detail & Related papers (2020-11-01T17:54:21Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.