論文の概要: Self-Supervised One-Shot Learning for Automatic Segmentation of StyleGAN
Images
- arxiv url: http://arxiv.org/abs/2303.05639v3
- Date: Mon, 23 Oct 2023 17:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 13:25:19.634899
- Title: Self-Supervised One-Shot Learning for Automatic Segmentation of StyleGAN
Images
- Title(参考訳): スタイルGAN画像の自動分割のための教師付きワンショット学習
- Authors: Ankit Manerikar and Avinash C. Kak
- Abstract要約: 本稿では,StyleGANによって生成された合成画像の自動ワンショットセグメンテーションのためのフレームワークを提案する。
本フレームワークは,自己教師付きコントラストクラスタリングアルゴリズムを用いて合成画像のセグメンテーションを学習する。
また,脅威検出のための合成荷物X線スキャンのフレームワークであるBagGANの実装において,提案したワンショット学習機を用いた結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for the automatic one-shot segmentation of synthetic
images generated by a StyleGAN. Our framework is based on the observation that
the multi-scale hidden features in the GAN generator hold useful semantic
information that can be utilized for automatic on-the-fly segmentation of the
generated images. Using these features, our framework learns to segment
synthetic images using a self-supervised contrastive clustering algorithm that
projects the hidden features into a compact space for per-pixel classification.
This contrastive learner is based on using a novel data augmentation strategy
and a pixel-wise swapped prediction loss that leads to faster learning of the
feature vectors for one-shot segmentation. We have tested our implementation on
five standard benchmarks to yield a segmentation performance that not only
outperforms the semi-supervised baselines by an average wIoU margin of 1.02 %
but also improves the inference speeds by a factor of 4.5. Finally, we also
show the results of using the proposed one-shot learner in implementing BagGAN,
a framework for producing annotated synthetic baggage X-ray scans for threat
detection. This framework was trained and tested on the PIDRay baggage
benchmark to yield a performance comparable to its baseline segmenter based on
manual annotations.
- Abstract(参考訳): 本稿では,StyleGANによって生成された合成画像の自動ワンショットセグメンテーションのためのフレームワークを提案する。
筆者らのフレームワークは,生成した画像の自動オンザフライセグメンテーションに使用可能な,GANジェネレータのマルチスケール隠れ機能が有用な意味情報を保持するという観測に基づいている。
これらの特徴を用いて, 自己教師付きコントラストクラスタリングアルゴリズムを用いて合成画像のセグメンテーションを学習し, 隠れた特徴をピクセル単位の分類のためのコンパクトな空間に投影する。
このコントラスト学習器は、新しいデータ拡張戦略とピクセル単位での予測損失を用いることで、ワンショットセグメンテーションのための特徴ベクトルの学習を高速化する。
我々は、5つの標準ベンチマークで実装をテストし、セミ教師付きベースラインを1.02 %の平均wiouマージンで上回るセグメンテーション性能を得るとともに、推論速度を4.5倍に向上させた。
また,提案したワンショット学習機を用いて,警告検出のための注釈付き合成袋X線スキャンのフレームワークであるBagGANを実装した。
このフレームワークはpidray baggageベンチマークでトレーニングされ、手動アノテーションに基づいたベースラインセグナーに匹敵するパフォーマンスを提供するためにテストされた。
関連論文リスト
- Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
少ないショットセグメンテーションは、注釈付き画像のみを提供する新しいタスクに迅速に適応できるセグメンテーションモデルをトレーニングすることを目的としている。
本稿では,対象オブジェクトの相対的サイズに基づいて,サポートイメージを拡大するIDA戦略を提案する。
提案したIDAは,サポートセットの多様性を効果的に向上し,サポートイメージとクエリイメージ間の分散一貫性を促進する。
論文 参考訳(メタデータ) (2024-01-18T10:29:10Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
オブジェクト検出やセマンティックセグメンテーションといった、より広範な視覚問題に対して、ゼロショット認識をどのようにうまく機能させるかは定かではない。
本稿では,既訓練の視覚言語モデルであるCLIPを用いて,ゼロショットセマンティックセマンティックセマンティックセマンティクスを構築することを目的とした。
実験結果から, この単純なフレームワークは, 従来の最先端をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-12-29T18:56:18Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
単発セグメンテーションのための自己誘導学習手法を提案する。
注釈付き支持画像の初期予測を行うことにより、被覆および検出された前景領域を一次および補助支持ベクトルに符号化する。
プライマリサポートベクターと補助サポートベクターの両方を集約することで、クエリイメージ上でより良いセグメンテーション性能が得られます。
論文 参考訳(メタデータ) (2021-03-30T07:36:41Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
入力画像の2つのビュー間の画素レベルでの差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分)を最適化することにより自己教師学習を実現する。
ベースライン法であるMoCo-v2と比較すると,計算オーバーヘッドは1%遅かった。
論文 参考訳(メタデータ) (2020-11-18T08:42:32Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shotのセグメンテーションは、アノテートされたサンプルがほとんどない各画像ピクセルにカテゴリラベルを割り当てることを目的としている。
既存のメタラーニング手法では, 画像から抽出した視覚的特徴を埋め込み空間に埋め込むと, カテゴリー別識別記述子の生成に失敗する傾向にある。
本稿では,複数のエピソードにまたがる潜在特徴の分布を,自己分割方式に基づいて動的に調整する適応型フレームワークチューニングを提案する。
論文 参考訳(メタデータ) (2020-04-12T03:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。