論文の概要: MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems
- arxiv url: http://arxiv.org/abs/2303.05758v1
- Date: Fri, 10 Mar 2023 07:52:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 15:38:42.661964
- Title: MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems
- Title(参考訳): mixpgd:音声認識システムのためのハイブリッドadversarial training
- Authors: Aminul Huq, Weiyi Zhang, Xiaolin Hu
- Abstract要約: ASRシステムのモデルの堅牢性を向上させるために,混合PGD逆行訓練法を提案する。
標準的な対人訓練では、教師なしまたは教師なしの手法を利用して、敵のサンプルを生成する。
我々は,モデルロバスト性向上に役立つ新しい対向サンプルを生成するために,教師付きアプローチと教師なしアプローチの両機能を融合する。
- 参考スコア(独自算出の注目度): 18.01556863687433
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Automatic speech recognition (ASR) systems based on deep neural networks are
weak against adversarial perturbations. We propose mixPGD adversarial training
method to improve the robustness of the model for ASR systems. In standard
adversarial training, adversarial samples are generated by leveraging
supervised or unsupervised methods. We merge the capabilities of both
supervised and unsupervised approaches in our method to generate new
adversarial samples which aid in improving model robustness. Extensive
experiments and comparison across various state-of-the-art defense methods and
adversarial attacks have been performed to show that mixPGD gains 4.1% WER of
better performance than previous best performing models under white-box
adversarial attack setting. We tested our proposed defense method against both
white-box and transfer based black-box attack settings to ensure that our
defense strategy is robust against various types of attacks. Empirical results
on several adversarial attacks validate the effectiveness of our proposed
approach.
- Abstract(参考訳): ディープニューラルネットワークに基づく自動音声認識(ASR)システムは、敵の摂動に対して弱い。
ASRシステムのモデルの堅牢性を向上させるために,混合PGD逆行訓練法を提案する。
標準的な対人訓練では、教師なしまたは教師なしの手法を利用して、敵のサンプルを生成する。
我々は,モデルロバスト性向上に役立つ新しい対向サンプルを生成するために,教師付きアプローチと教師なしアプローチを融合する。
様々な最先端の防御方法と敵攻撃に対する広範囲な実験と比較を行い、混合PGDは、ホワイトボックスの敵攻撃設定下での過去の最高の性能モデルよりも4.1%WER向上していることを示した。
提案手法をホワイトボックスおよび転送ベースのブラックボックス攻撃設定に対して適用し, 各種攻撃に対する防御戦略の堅牢性を確認した。
いくつかの敵攻撃に対する実証実験の結果,提案手法の有効性が検証された。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting [5.084323778393556]
標的外攻撃による敵の訓練は 最も認知されている方法の1つです
自然に不均衡なクラス間のセマンティックな類似性により、これらのハードクラスのペアが互いに仮想的なターゲットになる。
モデル最適化における重み付きハードクラスペアの損失について提案し、ハードクラスからの識別的特徴の学習を促す。
論文 参考訳(メタデータ) (2022-10-26T22:51:36Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Stochastic Security: Adversarial Defense Using Long-Run Dynamics of
Energy-Based Models [82.03536496686763]
敵対的攻撃に対するディープ・ネットワークの脆弱性は、認識とセキュリティの両方の観点から、ディープ・ラーニングの中心的な問題である。
我々は,自然学習型分類器の保護に重点を置き,マルコフ・チェイン・モンテカルロ (MCMC) とエネルギーベースモデル (EBM) を併用して敵の浄化を行った。
本研究は,1)現実的な長期MCMCサンプルを用いたEMMの訓練方法の改善,2)防衛の理論的曖昧さを解消する期待・オフバー・トランスフォーメーション(EOT)ディフェンス,3)自然に訓練された分類器と競争的ディフェンスのための最先端の対人ディフェンス,である。
論文 参考訳(メタデータ) (2020-05-27T17:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。