ExtraNeRF: Visibility-Aware View Extrapolation of Neural Radiance Fields with Diffusion Models
- URL: http://arxiv.org/abs/2406.06133v1
- Date: Mon, 10 Jun 2024 09:44:06 GMT
- Title: ExtraNeRF: Visibility-Aware View Extrapolation of Neural Radiance Fields with Diffusion Models
- Authors: Meng-Li Shih, Wei-Chiu Ma, Aleksander Holynski, Forrester Cole, Brian L. Curless, Janne Kontkanen,
- Abstract summary: ExtraNeRF is a novel method for extrapolating the range of views handled by a Neural Radiance Field (NeRF)
Our main idea is to leverage NeRFs to model scene-specific, fine-grained details, while capitalizing on diffusion models to extrapolate beyond our observed data.
- Score: 60.48305533224092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose ExtraNeRF, a novel method for extrapolating the range of views handled by a Neural Radiance Field (NeRF). Our main idea is to leverage NeRFs to model scene-specific, fine-grained details, while capitalizing on diffusion models to extrapolate beyond our observed data. A key ingredient is to track visibility to determine what portions of the scene have not been observed, and focus on reconstructing those regions consistently with diffusion models. Our primary contributions include a visibility-aware diffusion-based inpainting module that is fine-tuned on the input imagery, yielding an initial NeRF with moderate quality (often blurry) inpainted regions, followed by a second diffusion model trained on the input imagery to consistently enhance, notably sharpen, the inpainted imagery from the first pass. We demonstrate high-quality results, extrapolating beyond a small number of (typically six or fewer) input views, effectively outpainting the NeRF as well as inpainting newly disoccluded regions inside the original viewing volume. We compare with related work both quantitatively and qualitatively and show significant gains over prior art.
Related papers
- Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions [5.699788926464751]
Neural Radiance Fields (NeRF) show impressive performance in photo-realistic free-view rendering of scenes.
Recent improvements on the NeRF such as TensoRF and ZipNeRF employ explicit models for faster optimization and rendering.
We show that supervising the depth estimated by a radiance field helps train it effectively with fewer views.
arXiv Detail & Related papers (2024-04-29T18:00:25Z) - Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images.
We propose tempering the diffusion model'sity with per-scene customization and mitigating the textural shift with masked training.
Our framework yields state-of-the-art NeRF inpainting results on various real-world scenes.
arXiv Detail & Related papers (2024-04-15T17:59:57Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Self-NeRF: A Self-Training Pipeline for Few-Shot Neural Radiance Fields [17.725937326348994]
We propose Self-NeRF, a self-evolved NeRF that iteratively refines the radiance fields with very few number of input views.
In each iteration, we label unseen views with the predicted colors or warped pixels generated by the model from the preceding iteration.
These expanded pseudo-views are afflicted by imprecision in color and warping artifacts, which degrades the performance of NeRF.
arXiv Detail & Related papers (2023-03-10T08:22:36Z) - PANeRF: Pseudo-view Augmentation for Improved Neural Radiance Fields
Based on Few-shot Inputs [3.818285175392197]
neural radiance fields (NeRF) have promising applications for novel views of complex scenes.
NeRF requires dense input views, typically numbering in the hundreds, for generating high-quality images.
We propose pseudo-view augmentation of NeRF, a scheme that expands a sufficient amount of data by considering the geometry of few-shot inputs.
arXiv Detail & Related papers (2022-11-23T08:01:10Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from
Sparse Inputs [79.00855490550367]
We show that NeRF can produce photorealistic renderings of unseen viewpoints when many input views are available.
We address this by regularizing the geometry and appearance of patches rendered from unobserved viewpoints.
Our model outperforms not only other methods that optimize over a single scene, but also conditional models that are extensively pre-trained on large multi-view datasets.
arXiv Detail & Related papers (2021-12-01T18:59:46Z) - NeRF++: Analyzing and Improving Neural Radiance Fields [117.73411181186088]
Neural Radiance Fields (NeRF) achieve impressive view synthesis results for a variety of capture settings.
NeRF fits multi-layer perceptrons representing view-invariant opacity and view-dependent color volumes to a set of training images.
We address a parametrization issue involved in applying NeRF to 360 captures of objects within large-scale, 3D scenes.
arXiv Detail & Related papers (2020-10-15T03:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.