論文の概要: Feature Importance: A Closer Look at Shapley Values and LOCO
- arxiv url: http://arxiv.org/abs/2303.05981v1
- Date: Fri, 10 Mar 2023 15:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 14:33:58.539962
- Title: Feature Importance: A Closer Look at Shapley Values and LOCO
- Title(参考訳): 機能の重要性:shapleyの値とlocoをよく見る
- Authors: Isabella Verdinelli and Larry Wasserman
- Abstract要約: 変数の重要性を定義する2つの一般的な方法は、LOCOとShapley Valuesである。
これらの手法の特性とその利点と欠点について考察する。
一部の主張とは対照的に、Shapley値は特徴相関を排除しない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is much interest lately in explainability in statistics and machine
learning. One aspect of explainability is to quantify the importance of various
features (or covariates). Two popular methods for defining variable importance
are LOCO (Leave Out COvariates) and Shapley Values. We take a look at the
properties of these methods and their advantages and disadvantages. We are
particularly interested in the effect of correlation between features which can
obscure interpretability. Contrary to some claims, Shapley values do not
eliminate feature correlation. We critique the game theoretic axioms for
Shapley values and suggest some new axioms. We propose new, more statistically
oriented axioms for feature importance and some measures that satisfy these
axioms. However, correcting for correlation is a Faustian bargain: removing the
effect of correlation creates other forms of bias. Ultimately, we recommend a
slightly modified version of LOCO. We briefly consider how to modify Shapley
values to better address feature correlation.
- Abstract(参考訳): 近年、統計学や機械学習の解説に多くの関心が寄せられている。
説明可能性の1つの側面は、様々な特徴(または共変量)の重要性を定量化することである。
変数の重要性を定義する2つの一般的な方法は、LOCO(Leave Out Covariates)とShapley Valuesである。
これらの手法の特性と,その利点と欠点について考察する。
特に、解釈可能性の曖昧な特徴間の相関の影響に関心があります。
一部の主張とは対照的に、Shapley値は特徴相関を排除しない。
我々は、Shapley値に対するゲーム理論公理を批判し、いくつかの新しい公理を提案する。
我々は,これらの公理を満足する新しい統計的指向公理といくつかの指標を提案する。
しかし、相関の補正はファウスティアン・バルゲイン(英語版)であり、相関の効果を取り除くことは別の形のバイアスを生み出す。
最終的に、LOCOの少し修正したバージョンを推奨します。
特徴相関に対処するために、Shapley値の修正方法を簡潔に検討する。
関連論文リスト
- Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - WeightedSHAP: analyzing and improving Shapley based feature attributions [17.340091573913316]
共有価値(Shapley value)は、個々の特徴の影響を測定するための一般的なアプローチである。
WeightedSHAPを提案する。これはShapleyの価値を一般化し、データから直接フォーカスする限界貢献を学習する。
いくつかの実世界のデータセットにおいて、WeightedSHAPによって識別される影響のある特徴がモデルの予測を再カプセル化できることを示す。
論文 参考訳(メタデータ) (2022-09-27T14:34:07Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
一般化は、見えないデータを分類するモデルの能力をキャプチャする。
不変性はデータの変換におけるモデル予測の一貫性を測定する。
データセット中心の視点から、あるモデルの精度と不変性は異なるテストセット上で線形に相関している。
論文 参考訳(メタデータ) (2022-07-14T17:08:25Z) - Is Shapley Explanation for a model unique? [0.0]
特徴の分布とShapley値の関係について検討する。
我々の評価では、特定の特徴に対するShapleyの値は、期待値だけでなく、分散のような他の瞬間にも依存する。
これはモデルの結果(Probability/Log-odds/binary decision、recept/rejectなど)によって異なり、従ってモデルアプリケーションによって異なります。
論文 参考訳(メタデータ) (2021-11-23T15:31:46Z) - On Quantitative Evaluations of Counterfactuals [88.42660013773647]
本稿では、分析と実験を通じて、視覚的対実例の評価に関する研究を集約する。
ほとんどのメトリクスは、十分な単純なデータセットを意図して振る舞うが、複雑さが増加すると、良い結果と悪い結果の違いを判断できないものもいる。
私たちはラベル変動スコアとOracleスコアという2つの新しい指標を提案しています。
論文 参考訳(メタデータ) (2021-10-30T05:00:36Z) - Joint Shapley values: a measure of joint feature importance [6.169364905804678]
結合Shapley値を導入し、Shapley公理を直接拡張する。
ジョイントシェープの値は、モデルの予測に対する特徴の平均的な影響を測る。
ゲームの結果、ジョイントシェープの値は既存の相互作用指標とは異なる洞察を示します。
論文 参考訳(メタデータ) (2021-07-23T17:22:37Z) - Search Methods for Sufficient, Socially-Aligned Feature Importance
Explanations with In-Distribution Counterfactuals [72.00815192668193]
特徴重要度(FI)推定は一般的な説明形式であり、テスト時に特定の入力特徴を除去することによって生じるモデル信頼度の変化を計算し、評価することが一般的である。
FIに基づく説明の未探索次元についていくつかの考察を行い、この説明形式に対する概念的および実証的な改善を提供する。
論文 参考訳(メタデータ) (2021-06-01T20:36:48Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
素早い相関」とは、アナリストが重要とすべきでないと考える入力データのある側面に対するモデルの依存である。
機械学習では、これらにはノウ・イ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ」という特徴がある。
因果推論ツールを用いたストレステストについて検討した。
論文 参考訳(メタデータ) (2021-05-31T14:39:38Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
多くの機械学習アプリケーションは、2つの競合する目標を達成する表現を学習する。
ミニマックスゲーム理論の定式化は、精度と不変性の基本的なトレードオフを表す。
分類と回帰の双方において,この一般的かつ重要な問題を情報論的に解析する。
論文 参考訳(メタデータ) (2020-12-19T15:24:04Z) - Multicollinearity Correction and Combined Feature Effect in Shapley
Values [0.0]
共有値(Shapley value)は、特定の行に対する機能の重要性を表す。
我々は,Shapley値と相関した特徴量を計算する統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-03T12:28:42Z) - Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
Predictions of Complex Models [6.423239719448169]
シェープ値は、モデルの予測と平均ベースラインの差をモデルへの入力として使用する異なる特徴に関連付けるように設計されている。
これらの「因果」シャプリー値が、それらの望ましい性質を犠牲にすることなく、一般因果グラフに対してどのように導出できるかを示す。
論文 参考訳(メタデータ) (2020-11-03T11:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。