Optimal foraging strategies can be learned
- URL: http://arxiv.org/abs/2303.06050v3
- Date: Thu, 3 Aug 2023 09:19:32 GMT
- Title: Optimal foraging strategies can be learned
- Authors: Gorka Mu\~noz-Gil, Andrea L\'opez-Incera, Lukas J. Fiderer and Hans J.
Briegel
- Abstract summary: We explore optimal foraging strategies through a reinforcement learning framework.
We first prove theoretically that maximizing rewards in our reinforcement learning model is equivalent to optimizing foraging efficiency.
We then show with numerical experiments that, in the paradigmatic model of non-destructive search, our agents learn foraging strategies which outperform the efficiency of some of the best known strategies such as L'evy walks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The foraging behavior of animals is a paradigm of target search in nature.
Understanding which foraging strategies are optimal and how animals learn them
are central challenges in modeling animal foraging. While the question of
optimality has wide-ranging implications across fields such as economy,
physics, and ecology, the question of learnability is a topic of ongoing debate
in evolutionary biology. Recognizing the interconnected nature of these
challenges, this work addresses them simultaneously by exploring optimal
foraging strategies through a reinforcement learning framework. To this end, we
model foragers as learning agents. We first prove theoretically that maximizing
rewards in our reinforcement learning model is equivalent to optimizing
foraging efficiency. We then show with numerical experiments that, in the
paradigmatic model of non-destructive search, our agents learn foraging
strategies which outperform the efficiency of some of the best known strategies
such as L\'evy walks. These findings highlight the potential of reinforcement
learning as a versatile framework not only for optimizing search strategies but
also to model the learning process, thus shedding light on the role of learning
in natural optimization processes.
Related papers
- Learning to Steer Markovian Agents under Model Uncertainty [23.603487812521657]
We study how to design additional rewards to steer multi-agent systems towards desired policies.
Motivated by the limitation of existing works, we consider a new category of learning dynamics called emphMarkovian agents
We learn a emphhistory-dependent steering strategy to handle the inherent model uncertainty about the agents' learning dynamics.
arXiv Detail & Related papers (2024-07-14T14:01:38Z) - Can Learned Optimization Make Reinforcement Learning Less Difficult? [70.5036361852812]
We consider whether learned optimization can help overcome reinforcement learning difficulties.
Our method, Learned Optimization for Plasticity, Exploration and Non-stationarity (OPEN), meta-learns an update rule whose input features and output structure are informed by previously proposed to these difficulties.
arXiv Detail & Related papers (2024-07-09T17:55:23Z) - Emergence of Chemotactic Strategies with Multi-Agent Reinforcement Learning [1.9253333342733674]
We investigate whether reinforcement learning can provide insights into biological systems when trained to perform chemotaxis.
We run simulations covering a range of agent shapes, sizes, and swim speeds to determine if the physical constraints on biological swimmers, namely Brownian motion, lead to regions where reinforcement learners' training fails.
We find that RL agents can perform chemotaxis as soon as it is physically possible and, in some cases, even before the active swimming overpowers the environment.
arXiv Detail & Related papers (2024-04-02T14:42:52Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Meta-Learning Strategies through Value Maximization in Neural Networks [7.285835869818669]
We present a learning effort framework capable of efficiently optimizing control signals on a fully normative objective.
We apply this framework to investigate the effect of approximations in common meta-learning algorithms.
Across settings, we find that control effort is most beneficial when applied to easier aspects of a task early in learning.
arXiv Detail & Related papers (2023-10-30T18:29:26Z) - Behavior-based Neuroevolutionary Training in Reinforcement Learning [3.686320043830301]
This work presents a hybrid algorithm that combines neuroevolutionary optimization with value-based reinforcement learning.
For this purpose, we consolidate different methods to generate and optimize agent policies, creating a diverse population.
Our results indicate that combining methods can enhance the sample efficiency and learning speed for evolutionary approaches.
arXiv Detail & Related papers (2021-05-17T15:40:42Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
We show how optimistic exploration can be easily combined with state-of-the-art reinforcement learning algorithms.
Our experiments demonstrate that optimistic exploration significantly speeds-up learning when there are penalties on actions.
arXiv Detail & Related papers (2020-06-15T18:37:38Z) - Provable Representation Learning for Imitation Learning via Bi-level
Optimization [60.059520774789654]
A common strategy in modern learning systems is to learn a representation that is useful for many tasks.
We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple experts' trajectories are available.
We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone.
arXiv Detail & Related papers (2020-02-24T21:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.