Emergence of Chemotactic Strategies with Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2404.01999v1
- Date: Tue, 2 Apr 2024 14:42:52 GMT
- Title: Emergence of Chemotactic Strategies with Multi-Agent Reinforcement Learning
- Authors: Samuel Tovey, Christoph Lohrmann, Christian Holm,
- Abstract summary: We investigate whether reinforcement learning can provide insights into biological systems when trained to perform chemotaxis.
We run simulations covering a range of agent shapes, sizes, and swim speeds to determine if the physical constraints on biological swimmers, namely Brownian motion, lead to regions where reinforcement learners' training fails.
We find that RL agents can perform chemotaxis as soon as it is physically possible and, in some cases, even before the active swimming overpowers the environment.
- Score: 1.9253333342733674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) is a flexible and efficient method for programming micro-robots in complex environments. Here we investigate whether reinforcement learning can provide insights into biological systems when trained to perform chemotaxis. Namely, whether we can learn about how intelligent agents process given information in order to swim towards a target. We run simulations covering a range of agent shapes, sizes, and swim speeds to determine if the physical constraints on biological swimmers, namely Brownian motion, lead to regions where reinforcement learners' training fails. We find that the RL agents can perform chemotaxis as soon as it is physically possible and, in some cases, even before the active swimming overpowers the stochastic environment. We study the efficiency of the emergent policy and identify convergence in agent size and swim speeds. Finally, we study the strategy adopted by the reinforcement learning algorithm to explain how the agents perform their tasks. To this end, we identify three emerging dominant strategies and several rare approaches taken. These strategies, whilst producing almost identical trajectories in simulation, are distinct and give insight into the possible mechanisms behind which biological agents explore their environment and respond to changing conditions.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Replication of Multi-agent Reinforcement Learning for the "Hide and
Seek" Problem [0.552480439325792]
Lack of documentation makes it difficult to replicate once-deduced strategies.
The agents in this study are simulated similarly to Open Al's hider and seek agents, in addition to a flying mechanism.
This added functionality improves the Hider agents to develop a chasing strategy from approximately 2 million steps to 1.6 million steps and hiders.
arXiv Detail & Related papers (2023-10-09T06:06:34Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Investigating Navigation Strategies in the Morris Water Maze through
Deep Reinforcement Learning [4.408196554639971]
In this work, we simulate the Morris Water Maze in 2D to train deep reinforcement learning agents.
We perform automatic classification of navigation strategies, analyze the distribution of strategies used by artificial agents, and compare them with experimental data to show similar learning dynamics as those seen in humans and rodents.
arXiv Detail & Related papers (2023-06-01T18:16:16Z) - DEP-RL: Embodied Exploration for Reinforcement Learning in Overactuated
and Musculoskeletal Systems [14.295720603503806]
Reinforcement learning on large musculoskeletal models has not been able to show similar performance.
We conjecture that ineffective exploration in large overactuated action spaces is a key problem.
By integrating DEP into RL, we achieve fast learning of reaching and locomotion in musculoskeletal systems.
arXiv Detail & Related papers (2022-05-30T15:52:54Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - Coach-assisted Multi-Agent Reinforcement Learning Framework for
Unexpected Crashed Agents [120.91291581594773]
We present a formal formulation of a cooperative multi-agent reinforcement learning system with unexpected crashes.
We propose a coach-assisted multi-agent reinforcement learning framework, which introduces a virtual coach agent to adjust the crash rate during training.
To the best of our knowledge, this work is the first to study the unexpected crashes in the multi-agent system.
arXiv Detail & Related papers (2022-03-16T08:22:45Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Learning Complex Spatial Behaviours in ABM: An Experimental
Observational Study [0.0]
This paper explores how Reinforcement Learning can be applied to create emergent agent behaviours.
Running a series of simulations, we demonstrate that agents trained using the novel Proximal Policy optimisation algorithm behave in ways that exhibit properties of real-world intelligent adaptive behaviours.
arXiv Detail & Related papers (2022-01-04T11:56:11Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.