論文の概要: TSMixer: An all-MLP Architecture for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2303.06053v2
- Date: Wed, 19 Apr 2023 06:30:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 17:00:53.118514
- Title: TSMixer: An all-MLP Architecture for Time Series Forecasting
- Title(参考訳): TSMixer: 時系列予測のためのオールMLPアーキテクチャ
- Authors: Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O. Arik, Tomas Pfister
- Abstract要約: Time-Series Mixer (TSMixer)は、多層パーセプトロン(MLP)を積み重ねた新しいアーキテクチャである。
一般的な学術ベンチマークでは、シンプルな実装TSMixerは専門的な最先端モデルに匹敵する。
- 参考スコア(独自算出の注目度): 30.30829429548646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world time-series datasets are often multivariate with complex dynamics.
To capture this complexity, high capacity architectures like recurrent- or
attention-based sequential deep learning models have become popular. However,
recent work demonstrates that simple univariate linear models can outperform
such deep learning models on several commonly used academic benchmarks.
Extending them, in this paper, we investigate the capabilities of linear models
for time-series forecasting and present Time-Series Mixer (TSMixer), a novel
architecture designed by stacking multi-layer perceptrons (MLPs). TSMixer is
based on mixing operations along both the time and feature dimensions to
extract information efficiently. On popular academic benchmarks, the
simple-to-implement TSMixer is comparable to specialized state-of-the-art
models that leverage the inductive biases of specific benchmarks. On the
challenging and large scale M5 benchmark, a real-world retail dataset, TSMixer
demonstrates superior performance compared to the state-of-the-art
alternatives. Our results underline the importance of efficiently utilizing
cross-variate and auxiliary information for improving the performance of time
series forecasting. We present various analyses to shed light into the
capabilities of TSMixer. The design paradigms utilized in TSMixer are expected
to open new horizons for deep learning-based time series forecasting.
- Abstract(参考訳): 現実世界の時系列データセットはしばしば複雑なダイナミクスを持つ多変量である。
この複雑さを捉えるために、リカレントやアテンションベースのシーケンシャルディープラーニングモデルのような高容量アーキテクチャが普及している。
しかし、最近の研究では、単純な単変量線形モデルは、よく使われるいくつかの学術ベンチマークにおいて、そのような深層学習モデルより優れていることが示されている。
本稿では,時系列予測のための線形モデルと,多層パーセプトロン (mlps) を積み重ねた新しいアーキテクチャであるcurrent time-series mixer (tsmixer) の機能について検討する。
TSMixerは時間次元と特徴次元の混合操作に基づいて情報を効率的に抽出する。
一般的な学術ベンチマークでは、TSMixerは特定のベンチマークの帰納バイアスを利用する専門的な最先端モデルに匹敵する。
現実の小売データセットである挑戦的で大規模なM5ベンチマークでは、TSMixerは最先端の代替モデルよりも優れたパフォーマンスを示している。
その結果,時系列予測の性能向上にクロスバリアイトと補助情報を効果的に活用することの重要性が示唆された。
我々はTSMixerの能力について様々な分析を行った。
TSMixerで使用される設計パラダイムは、ディープラーニングに基づく時系列予測のための新たな地平を開くことが期待されている。
関連論文リスト
- xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories [20.773694998061707]
時系列データは様々な分野に分散しており、堅牢で正確な予測モデルの開発が必要である。
我々は,時間的シーケンス,共同時間可変情報,堅牢な予測のための複数の視点を効果的に統合するモデルであるxLSTM-Mixerを紹介する。
我々は,最近の最先端手法と比較して,xLSTM-Mixerの長期予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2024-10-22T11:59:36Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series [11.635608108358575]
本稿では,効率的な転送学習機能を備えたコンパクトモデルであるTiny Time Mixers (TTM)について紹介する。
TTMには、適応パッチ、多様な解像度サンプリング、およびさまざまなデータセット解像度の事前トレーニングを処理するための解像度プレフィックスチューニングなどのイノベーションが含まれている。
既存のベンチマークでは0/few-shot予測(4-40%)を上回り、計算要求を大幅に削減した。
論文 参考訳(メタデータ) (2024-01-08T15:21:21Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
本稿では,時系列表現を効果的に学習できる新しいフレームワークTEMPOを提案する。
TEMPOは、様々な領域のデータから現実世界の時間現象を動的にモデル化する機能を拡張する。
論文 参考訳(メタデータ) (2023-10-08T00:02:25Z) - TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series
Forecasting [13.410217680999459]
トランスフォーマーは、時系列の相互作用をキャプチャする能力のために時系列予測で人気を博している。
高メモリとコンピューティングの要求は、長期予測にとって重要なボトルネックとなる。
マルチ層パーセプトロン(MLP)モジュールからなる軽量ニューラルネットワークTSMixerを提案する。
論文 参考訳(メタデータ) (2023-06-14T06:26:23Z) - Learning Gaussian Mixture Representations for Tensor Time Series
Forecasting [8.31607451942671]
我々は、時間、位置、およびソース変数に暗示される各不均一成分を個別にモデル化する新しいTS予測フレームワークを開発する。
2つの実世界のTSデータセットによる実験結果は、最先端のベースラインと比較して、我々のアプローチの優位性を検証する。
論文 参考訳(メタデータ) (2023-06-01T06:50:47Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlionは時系列のためのオープンソースの機械学習ライブラリである。
モデルの統一インターフェースと、異常検出と予測のためのデータセットを備えている。
Merlionはまた、本番環境でのモデルのライブデプロイメントと再トレーニングをシミュレートするユニークな評価フレームワークも提供する。
論文 参考訳(メタデータ) (2021-09-20T02:03:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。