論文の概要: EEG Synthetic Data Generation Using Probabilistic Diffusion Models
- arxiv url: http://arxiv.org/abs/2303.06068v1
- Date: Mon, 6 Mar 2023 12:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-19 11:58:08.383415
- Title: EEG Synthetic Data Generation Using Probabilistic Diffusion Models
- Title(参考訳): 確率拡散モデルを用いた脳波合成データ生成
- Authors: Giulio Tosato, Cesare M. Dalbagno, Francesco Fumagalli
- Abstract要約: 本研究では,拡散確率モデルを用いて合成脳波データを生成する,データ拡張のための高度な手法を提案する。
脳波記録の電極周波数分布マップ(EFDM)から合成データを生成する。
提案手法は、大規模で公開可能な人工脳波データセットの作成を可能にすることにより、より広い分野の神経科学研究に潜在的に影響を及ぼす可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) plays a significant role in the Brain Computer
Interface (BCI) domain, due to its non-invasive nature, low cost, and ease of
use, making it a highly desirable option for widespread adoption by the general
public. This technology is commonly used in conjunction with deep learning
techniques, the success of which is largely dependent on the quality and
quantity of data used for training. To address the challenge of obtaining
sufficient EEG data from individual participants while minimizing user effort
and maintaining accuracy, this study proposes an advanced methodology for data
augmentation: generating synthetic EEG data using denoising diffusion
probabilistic models. The synthetic data are generated from electrode-frequency
distribution maps (EFDMs) of emotionally labeled EEG recordings. To assess the
validity of the synthetic data generated, both a qualitative and a quantitative
comparison with real EEG data were successfully conducted. This study opens up
the possibility for an open\textendash source accessible and versatile toolbox
that can process and generate data in both time and frequency dimensions,
regardless of the number of channels involved. Finally, the proposed
methodology has potential implications for the broader field of neuroscience
research by enabling the creation of large, publicly available synthetic EEG
datasets without privacy concerns.
- Abstract(参考訳): 脳波検査(EEG)は、非侵襲性、低コスト、使いやすさのために脳コンピュータインタフェース(BCI)領域において重要な役割を担っており、一般大衆に広く普及するのに非常に望ましい選択肢である。
この技術は、ディープラーニング技術と共に一般的に使われ、その成功はトレーニングに使用されるデータの質と量に大きく依存する。
利用者の努力を最小化し精度を保ちながら、個々の参加者から十分な脳波データを得るという課題に対処するため、拡散確率モデルを用いて合成脳波データを生成するための高度な手法を提案する。
脳波記録の電極周波数分布マップ(EFDM)から合成データを生成する。
生成した合成データの妥当性を評価するため,実脳波データと定性的,定量的な比較を行った。
この研究は、関連するチャネルの数に関係なく、時間と周波数の双方でデータを処理および生成できるopen\textendashソースアクセス可能で汎用的なツールボックスの可能性を開く。
最後に、提案手法は、プライバシーの懸念なく、大規模で一般公開された合成脳波データセットの作成を可能にすることにより、神経科学研究の幅広い分野に潜在的に影響を及ぼす可能性がある。
関連論文リスト
- Dataset Refinement for Improving the Generalization Ability of the EEG Decoding Model [2.9972387721489655]
脳波データセットからノイズの多いデータを除去するデータセット改良アルゴリズムを提案する。
提案したアルゴリズムは、元のデータセットよりも優れた一般化性能を実現している。
脳波領域における深層学習モデルの一般化性能を効果的に向上させることができると結論付けた。
論文 参考訳(メタデータ) (2024-10-31T05:08:24Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
本研究では、拡散モデルと強化学習を統合することにより、脳波(EEG)信号の合成に革新的なアプローチを導入する。
提案手法は, 時間的・スペクトル的特徴の詳細な脳波信号の生成を促進させ, 合成データセットの信頼性と多様性を向上する。
論文 参考訳(メタデータ) (2024-09-14T07:22:31Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRは、病気の進行予測、臨床試験設計、健康経済学と結果研究など、多くの計算医学の応用を可能にする中心的なデータソースである。
幅広いユーザビリティにもかかわらず、その繊細な性質はプライバシーと秘密の懸念を高め、潜在的なユースケースを制限する。
これらの課題に対処するために,人工的かつ現実的なEHRを合成するための生成モデルの利用について検討する。
論文 参考訳(メタデータ) (2024-04-18T16:50:46Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
医療分野では、プライバシー上の懸念から個人レベルのデータへのアクセスは困難であることが多い。
有望な代替手段は、完全な合成データの生成である。
本研究では,最先端の合成データ生成手法を用いる。
論文 参考訳(メタデータ) (2023-05-12T13:13:55Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - GANSER: A Self-supervised Data Augmentation Framework for EEG-based
Emotion Recognition [15.812231441367022]
本稿では,GANSER(Generative Adversarial Network-based Self-supervised Data Augmentation)という新しいデータ拡張フレームワークを提案する。
脳波に基づく感情認識のための自己教師型学習と対人訓練を併用する最初の試みとして、提案フレームワークは高品質な模擬脳波サンプルを生成することができる。
変換関数は、脳波信号の一部を隠蔽し、生成元に残りの部分に基づいて潜在的な脳波信号を合成させる。
論文 参考訳(メタデータ) (2021-09-07T14:42:55Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep
Generative Models [13.56090099952884]
本稿では、感情認識モデルの性能を高めるために、脳波トレーニングデータを増強する3つの方法を提案する。
フル利用戦略では、生成されたすべてのデータが、生成されたデータの品質を判断することなく、トレーニングデータセットに拡張される。
実験結果から,脳波を用いた感情認識モデルの性能向上を図った。
論文 参考訳(メタデータ) (2020-06-04T21:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。