論文の概要: A Statistical Approach for Synthetic EEG Data Generation
- arxiv url: http://arxiv.org/abs/2504.16143v1
- Date: Tue, 22 Apr 2025 06:48:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.87129
- Title: A Statistical Approach for Synthetic EEG Data Generation
- Title(参考訳): 合成脳波データ生成のための統計的アプローチ
- Authors: Gideon Vos, Maryam Ebrahimpour, Liza van Eijk, Zoltan Sarnyai, Mostafa Rahimi Azghadi,
- Abstract要約: 本研究では,相関解析とランダムサンプリングを組み合わせて,リアルな合成脳波データを生成する手法を提案する。
生の脳波と生の脳波を区別するために訓練されたランダムフォレストモデルは、偶然に高い忠実度を示す。
この方法は、脳波データセットを拡張するためのスケーラブルでプライバシー保護のアプローチを提供し、メンタルヘルス研究におけるより効率的なモデルトレーニングを可能にする。
- 参考スコア(独自算出の注目度): 2.5648452174203062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalogram (EEG) data is crucial for diagnosing mental health conditions but is costly and time-consuming to collect at scale. Synthetic data generation offers a promising solution to augment datasets for machine learning applications. However, generating high-quality synthetic EEG that preserves emotional and mental health signals remains challenging. This study proposes a method combining correlation analysis and random sampling to generate realistic synthetic EEG data. We first analyze interdependencies between EEG frequency bands using correlation analysis. Guided by this structure, we generate synthetic samples via random sampling. Samples with high correlation to real data are retained and evaluated through distribution analysis and classification tasks. A Random Forest model trained to distinguish synthetic from real EEG performs at chance level, indicating high fidelity. The generated synthetic data closely match the statistical and structural properties of the original EEG, with similar correlation coefficients and no significant differences in PERMANOVA tests. This method provides a scalable, privacy-preserving approach for augmenting EEG datasets, enabling more efficient model training in mental health research.
- Abstract(参考訳): 心電図(EEG)データは精神疾患の診断には不可欠であるが、大規模に収集するのに費用と時間を要する。
合成データ生成は、機械学習アプリケーションのためのデータセットを拡張するための有望なソリューションを提供する。
しかし、感情と精神の健康信号を保持する高品質な人工脳波を生成することは依然として困難である。
本研究では,相関解析とランダムサンプリングを組み合わせて,リアルな合成脳波データを生成する手法を提案する。
まず相関分析を用いて,脳波周波数帯間の相互依存性を解析する。
この構造で導かれ、ランダムサンプリングにより合成サンプルを生成する。
実データと高い相関を持つサンプルは、分布解析と分類タスクによって保持・評価される。
生の脳波と生の脳波を区別するために訓練されたランダムフォレストモデルは、偶然に高い忠実度を示す。
生成した合成データはオリジナルの脳波の統計的・構造的特性とよく一致し, 相関係数は類似し, PERMANOVA試験では有意差は認められなかった。
この方法は、脳波データセットを拡張するためのスケーラブルでプライバシー保護のアプローチを提供し、メンタルヘルス研究におけるより効率的なモデルトレーニングを可能にする。
関連論文リスト
- Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
プレトレーニングコーパスを多種多様な高品質な合成データセットに変換するスケーラブルなフレームワークであるSynthLLMを紹介した。
提案手法は,グラフアルゴリズムを用いて複数の文書にまたがるハイレベルな概念を自動的に抽出し,再結合することで実現している。
論文 参考訳(メタデータ) (2025-03-25T11:07:12Z) - Synthetic Data Generation by Supervised Neural Gas Network for Physiological Emotion Recognition Data [0.0]
本研究では,SNG(Supervised Neural Gas)ネットワークを用いた合成データ生成の革新的アプローチを提案する。
SNGは入力データを効率的に処理し、元のデータ分布を忠実に模倣する合成インスタンスを作成する。
論文 参考訳(メタデータ) (2025-01-19T15:34:05Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
本研究では、拡散モデルと強化学習を統合することにより、脳波(EEG)信号の合成に革新的なアプローチを導入する。
提案手法は, 時間的・スペクトル的特徴の詳細な脳波信号の生成を促進させ, 合成データセットの信頼性と多様性を向上する。
論文 参考訳(メタデータ) (2024-09-14T07:22:31Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
本稿では,合成データに対する統計的手法の有効性と,合成データのプライバシーリスクについて考察する。
この枠組みにおける重要な発見は、合成データに対する統計的手法の誤差率は、より多くの合成データを追加することで減少するが、最終的には上昇または安定化する可能性があることを明らかにする世代効果である。
論文 参考訳(メタデータ) (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Fast and Functional Structured Data Generators Rooted in Out-of-Equilibrium Physics [44.97217246897902]
エネルギーモデルを用いて、構造化データセットで高品質なラベル特化データを生成するという課題に対処する。
伝統的な訓練方法は、マルコフ連鎖モンテカルロ混合による困難に遭遇する。
非平衡効果を利用した新しいトレーニングアルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-07-13T15:08:44Z) - Synthesize High-dimensional Longitudinal Electronic Health Records via
Hierarchical Autoregressive Language Model [40.473866438962034]
合成電子健康記録は、機械学習(ML)モデリングと統計解析のための実際のEHRの代替として機能することができる。
階層型自己回帰言語mOdel(HALO)を提案する。
論文 参考訳(メタデータ) (2023-04-04T23:53:34Z) - EEG Synthetic Data Generation Using Probabilistic Diffusion Models [0.0]
本研究では,拡散確率モデルを用いて合成脳波データを生成する,データ拡張のための高度な手法を提案する。
脳波記録の電極周波数分布マップ(EFDM)から合成データを生成する。
提案手法は、大規模で公開可能な人工脳波データセットの作成を可能にすることにより、より広い分野の神経科学研究に潜在的に影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-03-06T12:03:22Z) - Evaluation of the Synthetic Electronic Health Records [3.255030588361125]
本研究は、合成データセットのサンプルワイズ評価のための類似性と特異性という2つの指標を概説する。
本研究は,Cystic Fibrosis (CF) 患者の電子的健康記録を合成するために,いくつかの最先端の遺伝子モデルを用いて提案された概念を実証する。
論文 参考訳(メタデータ) (2022-10-16T22:46:08Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - GANSER: A Self-supervised Data Augmentation Framework for EEG-based
Emotion Recognition [15.812231441367022]
本稿では,GANSER(Generative Adversarial Network-based Self-supervised Data Augmentation)という新しいデータ拡張フレームワークを提案する。
脳波に基づく感情認識のための自己教師型学習と対人訓練を併用する最初の試みとして、提案フレームワークは高品質な模擬脳波サンプルを生成することができる。
変換関数は、脳波信号の一部を隠蔽し、生成元に残りの部分に基づいて潜在的な脳波信号を合成させる。
論文 参考訳(メタデータ) (2021-09-07T14:42:55Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。