Towards domain-invariant Self-Supervised Learning with Batch Styles
Standardization
- URL: http://arxiv.org/abs/2303.06088v6
- Date: Fri, 19 Jan 2024 09:45:02 GMT
- Title: Towards domain-invariant Self-Supervised Learning with Batch Styles
Standardization
- Authors: Marin Scalbert and Maria Vakalopoulou and Florent Couzini\'e-Devy
- Abstract summary: Batch Styles Standardization (BSS) is a simple yet powerful method to standardize the style of images in a batch.
We show that BSS significantly improves downstream task performances on unseen domains, often outperforming or rivaling UDG methods.
- Score: 1.6060199783864477
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In Self-Supervised Learning (SSL), models are typically pretrained,
fine-tuned, and evaluated on the same domains. However, they tend to perform
poorly when evaluated on unseen domains, a challenge that Unsupervised Domain
Generalization (UDG) seeks to address. Current UDG methods rely on domain
labels, which are often challenging to collect, and domain-specific
architectures that lack scalability when confronted with numerous domains,
making the current methodology impractical and rigid. Inspired by
contrastive-based UDG methods that mitigate spurious correlations by
restricting comparisons to examples from the same domain, we hypothesize that
eliminating style variability within a batch could provide a more convenient
and flexible way to reduce spurious correlations without requiring domain
labels. To verify this hypothesis, we introduce Batch Styles Standardization
(BSS), a relatively simple yet powerful Fourier-based method to standardize the
style of images in a batch specifically designed for integration with SSL
methods to tackle UDG. Combining BSS with existing SSL methods offers serious
advantages over prior UDG methods: (1) It eliminates the need for domain labels
or domain-specific network components to enhance domain-invariance in SSL
representations, and (2) offers flexibility as BSS can be seamlessly integrated
with diverse contrastive-based but also non-contrastive-based SSL methods.
Experiments on several UDG datasets demonstrate that it significantly improves
downstream task performances on unseen domains, often outperforming or rivaling
with UDG methods. Finally, this work clarifies the underlying mechanisms
contributing to BSS's effectiveness in improving domain-invariance in SSL
representations and performances on unseen domain.
Related papers
- Domain-Guided Weight Modulation for Semi-Supervised Domain Generalization [11.392783918495404]
We study the challenging problem of semi-supervised domain generalization.
The goal is to learn a domain-generalizable model while using only a small fraction of labeled data and a relatively large fraction of unlabeled data.
We propose a novel method that can facilitate the generation of accurate pseudo-labels under various domain shifts.
arXiv Detail & Related papers (2024-09-04T01:26:23Z) - Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - Towards Generalizing to Unseen Domains with Few Labels [7.002657345547741]
We aim to obtain a model that learns domain-generalizable features by leveraging a limited subset of labelled data.
Existing domain generalization (DG) methods which are unable to exploit unlabeled data perform poorly compared to semi-supervised learning (SSL) methods.
arXiv Detail & Related papers (2024-03-18T11:21:52Z) - SUG: Single-dataset Unified Generalization for 3D Point Cloud
Classification [44.27324696068285]
We propose a Single-dataset Unified Generalization (SUG) framework to alleviate the unforeseen domain differences faced by a well-trained source model.
Specifically, we first design a Multi-grained Sub-domain Alignment (MSA) method, which can constrain the learned representations to be domain-agnostic and discriminative.
Then, a Sample-level Domain-aware Attention (SDA) strategy is presented, which can selectively enhance easy-to-adapt samples from different sub-domains.
arXiv Detail & Related papers (2023-05-16T04:36:04Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Transferrable Contrastive Learning for Visual Domain Adaptation [108.98041306507372]
Transferrable Contrastive Learning (TCL) is a self-supervised learning paradigm tailored for domain adaptation.
TCL penalizes cross-domain intra-class domain discrepancy between source and target through a clean and novel contrastive loss.
The free lunch is, thanks to the incorporation of contrastive learning, TCL relies on a moving-averaged key encoder that naturally achieves a temporally ensembled version of pseudo labels for target data.
arXiv Detail & Related papers (2021-12-14T16:23:01Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
Multi-source unsupervised domain adaptation (MSDA) aims at learning a predictor for an unlabeled domain by assigning weak knowledge from a bag of source models.
We propose to embed Multi-Source version of DomaIn Alignment Layers (MS-DIAL) at different levels of the predictor.
Our approach can improve state-of-the-art MSDA methods, yielding relative gains of up to +30.64% on their classification accuracies.
arXiv Detail & Related papers (2021-09-06T18:41:19Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios.
We propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
arXiv Detail & Related papers (2021-05-06T06:04:59Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.