Hierarchies of Frequentist Bounds for Quantum Metrology: From
Cram\'er-Rao to Barankin
- URL: http://arxiv.org/abs/2303.06108v2
- Date: Wed, 26 Jul 2023 09:03:08 GMT
- Title: Hierarchies of Frequentist Bounds for Quantum Metrology: From
Cram\'er-Rao to Barankin
- Authors: M. Gessner and A. Smerzi
- Abstract summary: We obtain hierarchies of increasingly tight bounds that include the quantum Cram'er-Rao bound at the lowest order.
Results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive lower bounds on the variance of estimators in quantum metrology by
choosing test observables that define constraints on the unbiasedness of the
estimator. The quantum bounds are obtained by analytical optimization over all
possible quantum measurements and estimators that satisfy the given
constraints. We obtain hierarchies of increasingly tight bounds that include
the quantum Cram\'er-Rao bound at the lowest order. In the opposite limit, the
quantum Barankin bound is the variance of the locally best unbiased estimator
in quantum metrology. Our results reveal generalizations of the quantum Fisher
information that are able to avoid regularity conditions and identify threshold
behavior in quantum measurements with mixed states, caused by finite data.
Related papers
- Contraction of Private Quantum Channels and Private Quantum Hypothesis Testing [5.211732144306638]
We study contraction coefficient for hockey-stick divergence under privacy constraints.
We also show how private quantum channels provide fairness and Holevo information stability in quantum learning settings.
arXiv Detail & Related papers (2024-06-26T18:00:03Z) - Two-stage Quantum Estimation and the Asymptotics of Quantum-enhanced
Transmittance Sensing [2.5449435573379757]
Quantum Cram'er-Rao bound is the ultimate limit of the mean squared error for unbiased estimation of an unknown parameter embedded in a quantum state.
We apply our results to the cost of quantum-enhanced transmittance sensing.
arXiv Detail & Related papers (2024-02-27T22:28:42Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Approximation of the Nearest Classical-Classical State to a Quantum
State [0.0]
A revolutionary step in computation is driven by quantumness or quantum correlations, which are permanent in entanglements but often in separable states.
The exact quantification of quantumness is an NP-hard problem; thus, we consider alternative approaches to approximate it.
We show that the objective value decreases along the flow by proofs and numerical results.
arXiv Detail & Related papers (2023-01-23T08:26:17Z) - Finitely Repeated Adversarial Quantum Hypothesis Testing [22.102728605081534]
We formulate a passive quantum detector based on a quantum hypothesis testing framework under the setting of finite sample size.
Under the assumption that the attacker adopts separable optimal strategies, we derive that the worst-case average error bound converges to zero exponentially.
We adopt our formulations upon a case study of detection with quantum radars.
arXiv Detail & Related papers (2022-12-02T17:08:17Z) - Incompatibility measures in multi-parameter quantum estimation under
hierarchical quantum measurements [4.980960723762946]
We show an approach to study the incompatibility under general $p$-local measurements.
We demonstrate the power of the approach by presenting a hierarchy of analytical bounds on the tradeoff.
arXiv Detail & Related papers (2021-09-13T09:33:47Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z) - Quantum Fisher information measurement and verification of the quantum
Cram\'er-Rao bound in a solid-state qubit [11.87072483257275]
We experimentally demonstrate near saturation of the quantum Cram'er-Rao bound in the phase estimation of a solid-state spin system.
This is achieved by comparing the experimental uncertainty in phase estimation with an independent measurement of the related quantum Fisher information.
arXiv Detail & Related papers (2020-03-18T17:51:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.