Enhancing MAP-Elites with Multiple Parallel Evolution Strategies
- URL: http://arxiv.org/abs/2303.06137v2
- Date: Fri, 12 Apr 2024 11:51:29 GMT
- Title: Enhancing MAP-Elites with Multiple Parallel Evolution Strategies
- Authors: Manon Flageat, Bryan Lim, Antoine Cully,
- Abstract summary: We propose a novel Quality-Diversity (QD) algorithm based on Evolution Strategies (ES)
MEMES maintains multiple (up to 100) simultaneous ES processes, each with its own independent objective and reset mechanism designed for QD optimisation.
We show that MEMES outperforms both gradient-based and mutation-based QD algorithms on black-box optimisation and QD-Reinforcement-Learning tasks.
- Score: 8.585387103144825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the development of fast and massively parallel evaluations in many domains, Quality-Diversity (QD) algorithms, that already proved promising in a large range of applications, have seen their potential multiplied. However, we have yet to understand how to best use a large number of evaluations as using them for random variations alone is not always effective. High-dimensional search spaces are a typical situation where random variations struggle to effectively search. Another situation is uncertain settings where solutions can appear better than they truly are and naively evaluating more solutions might mislead QD algorithms. In this work, we propose MAP-Elites-Multi-ES (MEMES), a novel QD algorithm based on Evolution Strategies (ES) designed to exploit fast parallel evaluations more effectively. MEMES maintains multiple (up to 100) simultaneous ES processes, each with its own independent objective and reset mechanism designed for QD optimisation, all on just a single GPU. We show that MEMES outperforms both gradient-based and mutation-based QD algorithms on black-box optimisation and QD-Reinforcement-Learning tasks, demonstrating its benefit across domains. Additionally, our approach outperforms sampling-based QD methods in uncertain domains when given the same evaluation budget. Overall, MEMES generates reproducible solutions that are high-performing and diverse through large-scale ES optimisation on easily accessible hardware.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
Quality-Diversity (QD) algorithms aim to find a set of high-performing, yet diverse solutions.
This paper tries to shed some light on the optimization ability of QD algorithms via rigorous running time analysis.
arXiv Detail & Related papers (2024-01-19T07:40:24Z) - Don't Bet on Luck Alone: Enhancing Behavioral Reproducibility of
Quality-Diversity Solutions in Uncertain Domains [2.639902239625779]
We introduce Archive Reproducibility Improvement Algorithm (ARIA)
ARIA is a plug-and-play approach that improves the quality of solutions present in an archive.
We show that our algorithm enhances the quality and descriptor space coverage of any given archive by at least 50%.
arXiv Detail & Related papers (2023-04-07T14:45:14Z) - IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing [88.35145788575348]
Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing.
The lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications.
We construct a comprehensive image anomaly detection benchmark (IM-IAD), which includes 19 algorithms on seven major datasets.
arXiv Detail & Related papers (2023-01-31T01:24:45Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
Generalizability and stability are two key objectives for operating reinforcement learning (RL) agents in the real world.
This paper presents MetaPG, an evolutionary method for automated design of actor-critic loss functions.
arXiv Detail & Related papers (2022-04-08T20:46:16Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
We propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME)
Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations.
We evaluate our method on several tasks, from standard optimization problems to robotics simulations.
arXiv Detail & Related papers (2022-02-07T10:48:28Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Fast and stable MAP-Elites in noisy domains using deep grids [1.827510863075184]
Deep-Grid MAP-Elites is a variant of the MAP-Elites algorithm that uses an archive of similar previously encountered solutions to approximate the performance of a solution.
We show that this simple approach is significantly more resilient to noise on the behavioural descriptors, while achieving competitive performances in terms of fitness optimisation.
arXiv Detail & Related papers (2020-06-25T08:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.