Multi-Objective Quality Diversity Optimization
- URL: http://arxiv.org/abs/2202.03057v1
- Date: Mon, 7 Feb 2022 10:48:28 GMT
- Title: Multi-Objective Quality Diversity Optimization
- Authors: Thomas Pierrot, Guillaume Richard, Karim Beguir, Antoine Cully
- Abstract summary: We propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME)
Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations.
We evaluate our method on several tasks, from standard optimization problems to robotics simulations.
- Score: 2.4608515808275455
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we consider the problem of Quality-Diversity (QD) optimization
with multiple objectives. QD algorithms have been proposed to search for a
large collection of both diverse and high-performing solutions instead of a
single set of local optima. Thriving for diversity was shown to be useful in
many industrial and robotics applications. On the other hand, most real-life
problems exhibit several potentially antagonist objectives to be optimized.
Hence being able to optimize for multiple objectives with an appropriate
technique while thriving for diversity is important to many fields. Here, we
propose an extension of the MAP-Elites algorithm in the multi-objective
setting: Multi-Objective MAP-Elites (MOME). Namely, it combines the diversity
inherited from the MAP-Elites grid algorithm with the strength of
multi-objective optimizations by filling each cell with a Pareto Front. As
such, it allows to extract diverse solutions in the descriptor space while
exploring different compromises between objectives. We evaluate our method on
several tasks, from standard optimization problems to robotics simulations. Our
experimental evaluation shows the ability of MOME to provide diverse solutions
while providing global performances similar to standard multi-objective
algorithms.
Related papers
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Objectives Are All You Need: Solving Deceptive Problems Without Explicit
Diversity Maintenance [7.3153233408665495]
We present an approach with promise to solve deceptive domains without explicit diversity maintenance.
We use lexicase selection to optimize for these objectives as it has been shown to implicitly maintain population diversity.
We find that decomposing objectives into many objectives and optimizing them outperforms MAP-Elites on the deceptive domains that we explore.
arXiv Detail & Related papers (2023-11-04T00:09:48Z) - Can the Problem-Solving Benefits of Quality Diversity Be Obtained
Without Explicit Diversity Maintenance? [0.0]
We argue that the correct comparison should be made to emphmulti-objective optimization frameworks.
We present a method that utilizes dimensionality reduction to automatically determine a set of behavioral descriptors for an individual.
arXiv Detail & Related papers (2023-05-12T21:24:04Z) - Multi-Objective GFlowNets [59.16787189214784]
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
arXiv Detail & Related papers (2022-10-23T16:15:36Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
We show that multiobjective optimization does not always produce much diversity, multimodal optimization produces higher fitness solutions, and quality diversity is not sensitive to genetic neutrality.
An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set with quality diversity.
arXiv Detail & Related papers (2021-05-10T10:39:03Z) - Niching Diversity Estimation for Multi-modal Multi-objective
Optimization [9.584279193016522]
Niching is an important and widely used technique in evolutionary multi-objective optimization.
In MMOPs, a solution in the objective space may have multiple inverse images in the decision space, which are termed as equivalent solutions.
A general niching mechanism is proposed to make standard diversity estimators more efficient when handling MMOPs.
arXiv Detail & Related papers (2021-01-31T05:23:31Z) - A Framework to Handle Multi-modal Multi-objective Optimization in
Decomposition-based Evolutionary Algorithms [7.81768535871051]
decomposition-based evolutionary algorithms have good performance for multi-objective optimization.
They are likely to perform poorly for multi-modal multi-objective optimization due to the lack of mechanisms to maintain the solution space diversity.
This paper proposes a framework to improve the performance of decomposition-based evolutionary algorithms for multi-modal multi-objective optimization.
arXiv Detail & Related papers (2020-09-30T14:32:57Z) - A Decomposition-based Large-scale Multi-modal Multi-objective
Optimization Algorithm [9.584279193016522]
We propose an efficient multi-modal multi-objective optimization algorithm based on the widely used MOEA/D algorithm.
Experimental results show that our proposed algorithm can effectively preserve the diversity of solutions in the decision space.
arXiv Detail & Related papers (2020-04-21T09:18:54Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.