Multi-Objective Covariance Matrix Adaptation MAP-Annealing
- URL: http://arxiv.org/abs/2505.20712v1
- Date: Tue, 27 May 2025 04:39:28 GMT
- Title: Multi-Objective Covariance Matrix Adaptation MAP-Annealing
- Authors: Shihan Zhao, Stefanos Nikolaidis,
- Abstract summary: Quality-Diversity (QD) optimization is an emerging field that focuses on finding a set of behaviorally diverse and high-quality solutions.<n>Recent work on Multi-Objective Quality-Diversity (MOQD) extends QD optimization to simultaneously optimize multiple objective functions.<n>This opens up multi-objective applications for QD, such as generating a diverse set of game maps that maximize difficulty, realism, or other properties.
- Score: 7.103319934188755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quality-Diversity (QD) optimization is an emerging field that focuses on finding a set of behaviorally diverse and high-quality solutions. While the quality is typically defined w.r.t. a single objective function, recent work on Multi-Objective Quality-Diversity (MOQD) extends QD optimization to simultaneously optimize multiple objective functions. This opens up multi-objective applications for QD, such as generating a diverse set of game maps that maximize difficulty, realism, or other properties. Existing MOQD algorithms use non-adaptive methods such as mutation and crossover to search for non-dominated solutions and construct an archive of Pareto Sets (PS). However, recent work in QD has demonstrated enhanced performance through the use of covariance-based evolution strategies for adaptive solution search. We propose bringing this insight into the MOQD problem, and introduce MO-CMA-MAE, a new MOQD algorithm that leverages Covariance Matrix Adaptation-Evolution Strategies (CMA-ES) to optimize the hypervolume associated with every PS within the archive. We test MO-CMA-MAE on three MOQD domains, and for generating maps of a co-operative video game, showing significant improvements in performance.
Related papers
- MOANA: Multi-Objective Ant Nesting Algorithm for Optimization Problems [21.80971564725773]
The Multi-Objective Ant Nesting Algorithm (MOANA) is a novel extension of the Ant Nesting Evolutionary Algorithm (ANA)<n>MOANA addresses key limitations of traditional evolutionary algorithms by improving scalability and diversity in multi-objective scenarios.<n>MOANA's applicability to real-world engineering optimization, such as welded beam design, showcases its ability to generate a broad range of optimal solutions.
arXiv Detail & Related papers (2024-11-08T18:31:53Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Covariance Matrix Adaptation MAP-Annealing [5.5216935362914485]
We propose a new quality diversity algorithm, Covariance Matrix Adaptation MAP-Annealing (CMA-MAE)
We provide theoretical justifications for the new algorithm with respect to each limitation.
Our theory informs our experiments, which show that CMA-MAE achieves state-of-the-art performance and robustness.
arXiv Detail & Related papers (2022-05-22T06:01:02Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
We propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME)
Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations.
We evaluate our method on several tasks, from standard optimization problems to robotics simulations.
arXiv Detail & Related papers (2022-02-07T10:48:28Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Decomposition in Decision and Objective Space for Multi-Modal
Multi-Objective Optimization [15.681236469530397]
Multi-modal multi-objective optimization problems (MMMOPs) have multiple subsets within the Pareto-optimal Set.
Prevalent multi-objective evolutionary algorithms are not purely designed to search for multiple solution subsets, whereas, algorithms designed for MMMOPs demonstrate degraded performance in the objective space.
This motivates the design of better algorithms for addressing MMMOPs.
arXiv Detail & Related papers (2020-06-04T03:18:47Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
This paper proposed a new Multi-objective Algorithm as an extension of the Hybrid Adaptive Evolutionary algorithm (HAEA) called MoHAEA.
MoHAEA is compared with four states of the art MOEAs, namely MOEA/D, pa$lambda$-MOEA/D, MOEA/D-AWA, and NSGA-II.
arXiv Detail & Related papers (2020-04-29T02:16:49Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.