Deformable Cross-Attention Transformer for Medical Image Registration
- URL: http://arxiv.org/abs/2303.06179v1
- Date: Fri, 10 Mar 2023 19:22:01 GMT
- Title: Deformable Cross-Attention Transformer for Medical Image Registration
- Authors: Junyu Chen, Yihao Liu, Yufan He, Yong Du
- Abstract summary: We propose a novel mechanism that computes windowed attention using deformable windows.
The proposed model was extensively evaluated on multi-modal, mono-modal, and atlas-to-patient registration tasks.
- Score: 11.498623409184225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have recently shown promise for medical image applications,
leading to an increasing interest in developing such models for medical image
registration. Recent advancements in designing registration Transformers have
focused on using cross-attention (CA) to enable a more precise understanding of
spatial correspondences between moving and fixed images. Here, we propose a
novel CA mechanism that computes windowed attention using deformable windows.
In contrast to existing CA mechanisms that require intensive computational
complexity by either computing CA globally or locally with a fixed and expanded
search window, the proposed deformable CA can selectively sample a diverse set
of features over a large search window while maintaining low computational
complexity. The proposed model was extensively evaluated on multi-modal,
mono-modal, and atlas-to-patient registration tasks, demonstrating promising
performance against state-of-the-art methods and indicating its effectiveness
for medical image registration. The source code for this work will be available
after publication.
Related papers
- Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - A Simple and Robust Framework for Cross-Modality Medical Image
Segmentation applied to Vision Transformers [0.0]
We propose a simple framework to achieve fair image segmentation of multiple modalities using a single conditional model.
We show that our framework outperforms other cross-modality segmentation methods on the Multi-Modality Whole Heart Conditional Challenge.
arXiv Detail & Related papers (2023-10-09T09:51:44Z) - RFR-WWANet: Weighted Window Attention-Based Recovery Feature Resolution
Network for Unsupervised Image Registration [7.446209993071451]
The Swin transformer has attracted attention in medical image analysis due to its computational efficiency and long-range modeling capability.
The registration models based on transformers combine multiple voxels into a single semantic token.
This merging process limits the transformers to model and generate coarse-grained spatial information.
We propose Recovery Feature Resolution Network (RFRNet), which allows the transformer to contribute fine-grained spatial information.
arXiv Detail & Related papers (2023-05-07T09:57:29Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - Optimizing Vision Transformers for Medical Image Segmentation and
Few-Shot Domain Adaptation [11.690799827071606]
We propose Convolutional Swin-Unet (CS-Unet) transformer blocks and optimise their settings with relation to patch embedding, projection, the feed-forward network, up sampling and skip connections.
CS-Unet can be trained from scratch and inherits the superiority of convolutions in each feature process phase.
Experiments show that CS-Unet without pre-training surpasses other state-of-the-art counterparts by large margins on two medical CT and MRI datasets with fewer parameters.
arXiv Detail & Related papers (2022-10-14T19:18:52Z) - TransMorph: Transformer for unsupervised medical image registration [5.911344579346077]
We present TransMorph, a hybrid Transformer-ConvNet model for volumetric medical image registration.
The proposed models are extensively validated against a variety of existing registration methods and Transformer architectures.
arXiv Detail & Related papers (2021-11-19T23:37:39Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - Hierarchical Variational Autoencoder for Visual Counterfactuals [79.86967775454316]
Conditional Variational Autos (VAE) are gathering significant attention as an Explainable Artificial Intelligence (XAI) tool.
In this paper we show how relaxing the effect of the posterior leads to successful counterfactuals.
We introduce VAEX an Hierarchical VAE designed for this approach that can visually audit a classifier in applications.
arXiv Detail & Related papers (2021-02-01T14:07:11Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.