Quantum information processing with superconducting circuits: a
perspective
- URL: http://arxiv.org/abs/2302.04558v1
- Date: Thu, 9 Feb 2023 10:49:56 GMT
- Title: Quantum information processing with superconducting circuits: a
perspective
- Authors: G. Wendin
- Abstract summary: Key issues involve how to achieve quantum advantage in useful applications for quantum optimization and materials science.
Recent work on applications of variational quantum algorithms for optimization and electronic structure determination.
Current work and ideas about how to scale up to competitive quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The last five years have seen a dramatic evolution of platforms for quantum
computing, taking the field from physics experiments to quantum hardware and
software engineering. Nevertheless, despite this progress of quantum
processors, the field is still in the noisy intermediate-scale quantum (NISQ)
regime, seriously limiting the performance of software applications. Key issues
involve how to achieve quantum advantage in useful applications for quantum
optimization and materials science, connected to the concept of quantum
supremacy first demonstrated by Google in 2019. In this article we will
describe recent work to establish relevant benchmarks for quantum supremacy and
quantum advantage, present recent work on applications of variational quantum
algorithms for optimization and electronic structure determination, discuss how
to achieve practical quantum advantage, and finally outline current work and
ideas about how to scale up to competitive quantum systems.
Related papers
- Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Review on Quantum Walk Computing: Theory, Implementation, and Application [0.30723404270319693]
The quantum walk is proposed as an important theoretical model for quantum computing.
Quantum walks and their variety have been extensively studied for achieving beyond classical computing power.
Recent progress has been achieved in implementing a wide variety of quantum walks and quantum walk applications.
arXiv Detail & Related papers (2024-04-05T15:45:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - Quantum Machine Learning Implementations: Proposals and Experiments [0.0]
The article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors.
The field of quantum machine learning could be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society.
arXiv Detail & Related papers (2023-03-11T01:02:16Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Annealing for Industry Applications: Introduction and Review [0.0]
In recent years, advances in quantum technologies have enabled the development of small- and intermediate-scale quantum processors.
We provide a literature review of the theoretical motivations for quantum annealing, the software and hardware that is required to use such quantum processors, and the state-of-the-art applications and proofs-of-concepts that have been demonstrated using them.
arXiv Detail & Related papers (2021-12-14T15:58:30Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.