Opportunities in Quantum Reservoir Computing and Extreme Learning
Machines
- URL: http://arxiv.org/abs/2102.11831v2
- Date: Sat, 10 Jul 2021 10:00:18 GMT
- Title: Opportunities in Quantum Reservoir Computing and Extreme Learning
Machines
- Authors: Pere Mujal, Rodrigo Mart\'inez-Pe\~na, Johannes Nokkala, Jorge
Garc\'ia-Beni, Gian Luca Giorgi, Miguel C. Soriano, Roberta Zambrini
- Abstract summary: Quantum reservoir computing (QRC) and quantum extreme learning machines (QELM) are two emerging approaches.
They exploit the quantumness of physical systems combined with an easy training strategy, achieving an excellent performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum reservoir computing (QRC) and quantum extreme learning machines
(QELM) are two emerging approaches that have demonstrated their potential both
in classical and quantum machine learning tasks. They exploit the quantumness
of physical systems combined with an easy training strategy, achieving an
excellent performance. The increasing interest in these unconventional
computing approaches is fueled by the availability of diverse quantum platforms
suitable for implementation and the theoretical progresses in the study of
complex quantum systems. In this review article, recent proposals and first
experiments displaying a broad range of possibilities are reviewed when quantum
inputs, quantum physical substrates and quantum tasks are considered. The main
focus is the performance of these approaches, on the advantages with respect to
classical counterparts and opportunities.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Quantum Supervised Learning [0.5439020425819]
Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational challenges.
The field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible near-term quantum advantage.
This paper aims to provide a classical perspective on current quantum algorithms for supervised learning.
arXiv Detail & Related papers (2024-07-24T11:05:05Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
In this work, we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on BAQIS Quafu quantum computing cloud.
The experimental results demonstrate that the Reinforcement Learning (RL) agents are capable of achieving goals that are slightly relaxed both during the training and inference stages.
arXiv Detail & Related papers (2023-05-29T09:13:50Z) - Quantum Machine Learning Implementations: Proposals and Experiments [0.0]
The article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors.
The field of quantum machine learning could be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society.
arXiv Detail & Related papers (2023-03-11T01:02:16Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning.
All these quantum machine learning approaches are experimentally feasible and effective on the state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-11-10T04:45:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.